8,723 research outputs found

    Electrodynamics of superconductors

    Full text link
    An alternate set of equations to describe the electrodynamics of superconductors at a macroscopic level is proposed. These equations resemble equations originally proposed by the London brothers but later discarded by them. Unlike the conventional London equations the alternate equations are relativistically covariant, and they can be understood as arising from the 'rigidity' of the superfluid wave function in a relativistically covariant microscopic theory. They predict that an internal 'spontaneous' electric field exists in superconductors, and that externally applied electric fields, both longitudinal and transverse, are screened over a London penetration length, as magnetic fields are. The associated longitudinal dielectric function predicts a much steeper plasmon dispersion relation than the conventional theory, and a blue shift of the minimum plasmon frequency for small samples. It is argued that the conventional London equations lead to difficulties that are removed in the present theory, and that the proposed equations do not contradict any known experimental facts. Experimental tests are discussed.Comment: Small changes following referee's and editor's comments; to be published in Phys.Rev.

    A theory of electromagnetic fluctuations for metallic surfaces and van der Waals interactions between metallic bodies

    Full text link
    A new general expression is derived for the fluctuating electromagnetic field outside a metal surface, in terms of its surface impedance. It provides a generalization to real metals of Lifshitz theory of molecular interactions between dielectric solids. The theory is used to compute the radiative heat transfer between two parallel metal surfaces at different temperatures. It is shown that a measurement of this quantity may provide an experimental resolution of a long-standing controversy about the effect of thermal corrections on the Casimir force between real metal plates.Comment: 4 pages, 2 figures; typos corrected, minor changes to match the published version in Physical Review Letter

    The Higher Order Schwarzian Derivative: Its Applications for Chaotic Behavior and New Invariant Sufficient Condition of Chaos

    Full text link
    The Schwarzian derivative of a function f(x) which is defined in the interval (a, b) having higher order derivatives is given by Sf(x)=(f''(x)/f'(x))'-1/2(f''(x)/f'(x))^2 . A sufficient condition for a function to behave chaotically is that its Schwarzian derivative is negative. In this paper, we try to find a sufficient condition for a non-linear dynamical system to behave chaotically. The solution function of this system is a higher degree polynomial. We define n-th Schwarzian derivative to examine its general properties. Our analysis shows that the sufficient condition for chaotic behavior of higher order polynomial is provided if its highest order three terms satisfy an inequality which is invariant under the degree of the polynomial and the condition is represented by Hankel determinant of order 2. Also the n-th order polynomial can be considered to be the partial sum of real variable analytic function. Let this analytic function be the solution of non-linear differential equation, then the sufficient condition for the chaotical behavior of this function is the Hankel determinant of order 2 negative, where the elements of this determinant are the coefficient of the terms of n, n-1, n-2 in Taylor expansion.Comment: 8 page

    Single WRW_R Production in eee^-e^- Collisions at the NLC

    Full text link
    Single WRW_R production in eee^-e^- collisions at the NLC can be used to probe the Majorana nature of the heavy neutrinos present in the Left-Right Symmetric Model below the kinematic threshold for their direct production. For colliders in the s=11.5\sqrt {s}=1-1.5 TeV range, typical cross sections of order 110fb1-10 fb are obtained, depending on the specific choice of model parameters. Backgrounds arising from Standard Model processes are shown to be small. This analysis greatly extends the kinematic range of previous studies wherein the production of an on-shell, like-sign pair of WRW_R's at the NLC was considered.Comment: 13pp, 3 figures (available on request), LaTex, SLAC-PUB-647

    New Physics Effects From B Meson Decays

    Full text link
    In this talk, we point out some of the present and future possible signatures of physics beyond the Standard Model from B-meson decays, taking R-parity conserving and violating supersymmetry as illustrative examples.Comment: Talk given at the Sixth Workshop on High Energy Particle Phenomenology (WHEPP-6), Chennai (Madras), India. Includes 2 epsf figure

    Weak Coupling Phase from Decays of Charged B Mesons to πK\pi K and ππ\pi\pi

    Full text link
    The theory of CPCP violation based on phases in weak couplings in the Cabibbo-Kobayashi-Maskawa (CKM) matrix requires the phase γArg Vub\gamma \equiv {\rm Arg~} V^*_{ub} (in a standard convention) to be nonzero. A measurement of γ\gamma is proposed based on charged BB meson decay rates to π+K0\pi^+ K^0, π0K+\pi^0 K^+, π+π0\pi^+ \pi^0, and the charge-conjugate states. The corresponding branching ratios are expected to be of the order of 10510^{-5}. (submitted to Physical Review Letters)Comment: LaTeX, 8 pages, 2 figures (not included, available upon request), TECHNION-PH-94-7, EFI-94-14, UdeM-LPN-TH-94-19

    Peculiar Features of the Interaction Potential between Hydrogen and Antihydrogen at Intermediate Separations

    Full text link
    We evaluate the interaction potential between a hydrogen and an antihydrogen using the second-order perturbation theory within the framework of the four-body system in a separable two-body basis. We find that the H-Hbar interaction potential possesses the peculiar features of a shallow local minimum located around interatomic separations of r ~ 6 a.u. and a barrier rising at r~5 a.u. Additional theoretical and experimental investigations on the nature of these peculiar features will be of great interest.Comment: 13 pages, 6 figure

    Crossover from hc/e to hc/2e current oscillations in rings of s-wave superconductors

    Full text link
    We analyze the crossover from an hc/e-periodicity of the persistent current in flux threaded clean metallic rings towards an hc/2e-flux periodicity of the supercurrent upon entering the superconducting state. On the basis of a model calculation for a one-dimensional ring we identify the underlying mechanism, which balances the hc/e versus the hc/2e periodic components of the current density. When the ring circumference exceeds the coherence length of the superconductor, the flux dependence is strictly hc/2e periodic. Further, we develop a multi-channel model which reduces the Bogoliubov - de Gennes equations to a one-dimensional differential equation for the radial component of the wave function. The discretization of this differential equation introduces transverse channels, whose number scales with the thickness of the ring. The periodicity crossover is analyzed close the critical temperature

    Spin flip lifetimes in superconducting atom chips: BCS versus Eliashberg theory

    Full text link
    We investigate theoretically the magnetic spin-flip transitions of neutral atoms trapped near a superconducting slab. Our calculations are based on a quantum-theoretical treatment of electromagnetic radiation near dielectric and metallic bodies. Specific results are given for rubidium atoms near a niobium superconductor. At the low frequencies typical of the atomic transitions, we find that BCS theory greatly overestimates coherence effects, which are much less pronounced when quasiparticle lifetime effects are included through Eliashberg theory. At 4.2 K, the typical atomic spin lifetime is found to be larger than a thousand seconds, even for atom-superconductor distances of one micrometer. This constitutes a large enhancement in comparison with normal metals.Comment: 10 pages, 4 figure

    CP-Violating Asymmetries in Charmless Non-Leptonic Decays BPP,PV,VVB \to PP, PV, VV in the Factorization Approach

    Full text link
    We present estimates of the direct (in decay amplitudes) and indirect (mixing- induced) CP-violating asymmetries in the non-leptonic charmless two-body decay rates for BPPB \to PP, BPVB \to PV and BVVB \to VV decays and their charged conjugates, where P(V) is a light pseudoscalar (vector) meson. These estimates are based on a generalized factorization approach making use of next-to-leading order perturbative QCD contributions which generate the required strong phases. No soft final state interactions are included. We study the dependence of the asymmetries on a number of input parameters and show that there are at least two (possibly three) classes of decays in which the asymmetries are parametrically stable in this approach. The decay modes of particular interest are: \optbar{B^0} \to \pi^+ \pi^-, \optbar{B^0} \to K_S^0 \pi^0, \optbar{B^0} \to K_S^0 \eta^\prime, \optbar{B^0} \to K_S^0 \eta and \optbar{B^0} \to \rho^+ \rho^-. Likewise, the CP-violating asymmetry in the decays \optbar{B^0} \to K_S^0 h^0 with h0=π0,KS0,η,ηh^0=\pi^0,K_S^0, \eta,\eta^\prime is found to be parametrically stable and large. Measurements of these asymmetries will lead to a determination of the phases sin2α\sin 2\alpha and sin2β\sin 2 \beta and we work out the relationships in these modes in the present theoretical framework. We also show the extent of the so-called "penguin pollution" in the rate asymmetry ACP(π+π)A_{CP}(\pi^+ \pi^-) and of the "tree shadow" in the asymmetry ACP(KS0η)A_{CP}(K_S^0\eta^\prime) which will effect the determination of sin2α\sin 2 \alpha and sin2β\sin 2 \beta from the respective measurements. CP-violating asymmetries in B±π±ηB^\pm \to \pi^\pm \eta^\prime, B±K±ηB^\pm \to K^{*\pm} \eta, B±K±ηB^\pm \to K^{*\pm} \eta^\prime and B±K±ρ0B^\pm \to K^{*\pm}\rho^0 are potentially interesting and are studied here.Comment: 42 pages (LaTex) including 19 figures, requires epsfig.sty; submitted to Phys. Rev.
    corecore