research

Spin flip lifetimes in superconducting atom chips: BCS versus Eliashberg theory

Abstract

We investigate theoretically the magnetic spin-flip transitions of neutral atoms trapped near a superconducting slab. Our calculations are based on a quantum-theoretical treatment of electromagnetic radiation near dielectric and metallic bodies. Specific results are given for rubidium atoms near a niobium superconductor. At the low frequencies typical of the atomic transitions, we find that BCS theory greatly overestimates coherence effects, which are much less pronounced when quasiparticle lifetime effects are included through Eliashberg theory. At 4.2 K, the typical atomic spin lifetime is found to be larger than a thousand seconds, even for atom-superconductor distances of one micrometer. This constitutes a large enhancement in comparison with normal metals.Comment: 10 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020