239 research outputs found

    Next generation sequencing in cancer: opportunities and challenges for precision cancer medicine

    Get PDF
    Over the past decade, testing the genes of patients and their specific cancer types has become standardized practice in medical oncology since somatic mutations, changes in gene expression and epigenetic modifications are all hallmarks of cancer. However, while cancer genetic assessment has been limited to single biomarkers to guide the use of therapies, improvements in nucleic acid sequencing technologies and implementation of different genome analysis tools have enabled clinicians to detect these genomic alterations and identify functional and disease-associated genomic variants. Next-generation sequencing (NGS) technologies have provided clues about therapeutic targets and genomic markers for novel clinical applications when standard therapy has failed. While Sanger sequencing, an accurate and sensitive approach, allows for the identification of potential novel variants, it is however limited by the single amplicon being interrogated. Similarly, quantitative and qualitative profiling of gene expression changes also represents a challenge for the cancer field. Both RT-PCR and microarrays are efficient approaches, but are limited to the genes present on the array or being assayed. This leaves vast swaths of the transcriptome, including non-coding RNAs and other features, unexplored. With the advent of the ability to collect and analyze genomic sequence data in a timely fashion and at an ever-decreasing cost, many of these limitations have been overcome and are being incorporated into cancer research and diagnostics giving patients and clinicians new hope for targeted and personalized treatment. Below we highlight the various applications of next-generation sequencing in precision cancer medicine

    Acute Myeloid Leukemia

    Get PDF
    Acute myeloid leukemia (AML) is the most common type of leukemia. The Cancer Genome Atlas Research Network has demonstrated the increasing genomic complexity of acute myeloid leukemia (AML). In addition, the network has facilitated our understanding of the molecular events leading to this deadly form of malignancy for which the prognosis has not improved over past decades. AML is a highly heterogeneous disease, and cytogenetics and molecular analysis of the various chromosome aberrations including deletions, duplications, aneuploidy, balanced reciprocal translocations and fusion of transcription factor genes and tyrosine kinases has led to better understanding and identification of subgroups of AML with different prognoses. Furthermore, molecular classification based on mRNA expression profiling has facilitated identification of novel subclasses and defined high-, poor-risk AML based on specific molecular signatures. However, despite increased understanding of AML genetics, the outcome for AML patients whose number is likely to rise as the population ages, has not changed significantly. Until it does, further investigation of the genomic complexity of the disease and advances in drug development are needed. In this review, leading AML clinicians and research investigators provide an up-to-date understanding of the molecular biology of the disease addressing advances in diagnosis, classification, prognostication and therapeutic strategies that may have significant promise and impact on overall patient survival

    Clinical exome performance for reporting secondary genetic findings.

    Get PDF
    BACKGROUND : Reporting clinically actionable incidental genetic findings in the course of clinical exome testing is recommended by the American College of Medical Genet- ics and Genomics (ACMG). However, the performance of clinical exome methods for reporting small subsets of genes has not been previously reported. METHODS : In this study, 57 exome data sets performed as clinical (n ! 12) or research (n ! 45) tests were retrospec- tively analyzed. Exome sequencing data was examined for adequacy in the detection of potentially pathogenic variant locations in the 56 genes described in the ACMG incidental findings recommendation. All exons of the 56 genes were examined for adequacy of sequencing coverage. In addition, nucleotide positions annotated in HGMD (Human Gene Mutation Database) were examined. RESULTS : The 56 ACMG genes have 18336 nucleotide variants annotated in HGMD. None of the 57 exome data sets possessed a HGMD variant. The clinical exome test had inadequate coverage for " 50% of HGMD vari- ant locations in 7 genes. Six exons from 6 different genes had consistent failure across all 3 test methods; these exons had high GC content (76%–84%). CONCLUSIONS : The use of clinical exome sequencing for the interpretation and reporting of subsets of genes requires recognition of the substantial possibility of inadequate depth and breadth of sequencing coverage at clinically relevant locations. Inadequate depth of coverage may contribute to false-negative clinical ex- ome results

    Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types.

    Get PDF
    Isoforms of human miRNAs (isomiRs) are constitutively expressed with tissue- and disease-subtype-dependencies. We studied 10 271 tumor datasets from The Cancer Genome Atlas (TCGA) to evaluate whether isomiRs can distinguish amongst 32 TCGA cancers. Unlike previous approaches, we built a classifier that relied solely on \u27binarized\u27 isomiR profiles: each isomiR is simply labeled as \u27present\u27 or \u27absent\u27. The resulting classifier successfully labeled tumor datasets with an average sensitivity of 90% and a false discovery rate (FDR) of 3%, surpassing the performance of expression-based classification. The classifier maintained its power even after a 15× reduction in the number of isomiRs that were used for training. Notably, the classifier could correctly predict the cancer type in non-TCGA datasets from diverse platforms. Our analysis revealed that the most discriminatory isomiRs happen to also be differentially expressed between normal tissue and cancer. Even so, we find that these highly discriminating isomiRs have not been attracting the most research attention in the literature. Given their ability to successfully classify datasets from 32 cancers, isomiRs and our resulting \u27Pan-cancer Atlas\u27 of isomiR expression could serve as a suitable framework to explore novel cancer biomarkers

    IsomiR Expression Profiles in Human Lymphoblastoid Cell Lines Exhibit Population and Gender Dependencies.

    Get PDF
    For many years it was believed that each mature microRNA (miRNA) existed as a single entity with fixed endpoints and a \u27static\u27 and unchangeable primary sequence. However, recent evidence suggests that mature miRNAs are more \u27dynamic\u27 and that each miRNA precursor arm gives rise to multiple isoforms, the isomiRs. Here we report on our identification of numerous and abundant isomiRs in the lymphoblastoid cell lines (LCLs) of 452 men and women from five different population groups. Unexpectedly, we find that these isomiRs exhibit an expression profile that is population-dependent and gender-dependent. This is important as it indicates that the LCLs of each gender/population combination have their own unique collection of mature miRNA transcripts. Moreover, each identified isomiR has its own characteristic abundance that remains consistent across biological replicates indicating that these are not degradation products. The primary sequences of identified isomiRs differ from the known miRBase miRNA either at their 5´-endpoint (leads to a different \u27seed\u27 sequence and suggests a different targetome), their 3´-endpoint, or both simultaneously. Our analysis of Argonaute PAR-CLIP data from LCLs supports the association of many of these newly identified isomiRs with the Argonaute silencing complex and thus their functional roles through participation in the RNA interference pathway

    MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects.

    Get PDF
    MINTbase is a repository that comprises nuclear and mitochondrial tRNA-derived fragments (\u27tRFs\u27) found in multiple human tissues. The original version of MINTbase comprised tRFs obtained from 768 transcriptomic datasets. We used our deterministic and exhaustive tRF mining pipeline to process all of The Cancer Genome Atlas datasets (TCGA). We identified 23 413 tRFs with abundance of ≥ 1.0 reads-per-million (RPM). To facilitate further studies of tRFs by the community, we just released version 2.0 of MINTbase that contains information about 26 531 distinct human tRFs from 11 719 human datasets as of October 2017. Key new elements include: the ability to filter tRFs on-the-fly by minimum abundance thresholding; the ability to filter tRFs by tissue keywords; easy access to information about a tRF\u27s maximum abundance and the datasets that contain it; the ability to generate relative abundance plots for tRFs across cancer types and convert them into embeddable figures; MODOMICS information about modifications of the parental tRNA, etc. Version 2.0 of MINTbase contains 15x more datasets and nearly 4x more distinct tRFs than the original version, yet continues to offer fast, interactive access to its contents. Version 2.0 is available freely at http://cm.jefferson.edu/MINTbase/

    A transcription map of the 6p22.3 reading disability locus identifying candidate genes

    Get PDF
    BACKGROUND: Reading disability (RD) is a common syndrome with a large genetic component. Chromosome 6 has been identified in several linkage studies as playing a significant role. A more recent study identified a peak of transmission disequilibrium to marker JA04 (G72384) on chromosome 6p22.3, suggesting that a gene is located near this marker. RESULTS: In silico cloning was used to identify possible candidate genes located near the JA04 marker. The 2 million base pairs of sequence surrounding JA04 was downloaded and searched against the dbEST database to identify ESTs. In total, 623 ESTs from 80 different tissues were identified and assembled into 153 putative coding regions from 19 genes and 2 pseudogenes encoded near JA04. The identified genes were tested for their tissue specific expression by RT-PCR. CONCLUSIONS: In total, five possible candidate genes for RD and other diseases mapping to this region were identified

    Churchill regulates cell movement and mesoderm specification by repressing Nodal signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell movements are essential to the determination of cell fates during development. The zinc-finger transcription factor, Churchill (ChCh) has been proposed to regulate cell fate by regulating cell movements during gastrulation in the chick. However, the mechanism of action of ChCh is not understood.</p> <p>Results</p> <p>We demonstrate that ChCh acts to repress the response to Nodal-related signals in zebrafish. When ChCh function is abrogated the expression of mesodermal markers is enhanced while ectodermal markers are expressed at decreased levels. In cell transplant assays, we observed that ChCh-deficient cells are more motile than wild-type cells. When placed in wild-type hosts, ChCh-deficient cells often leave the epiblast, migrate to the germ ring and are later found in mesodermal structures. We demonstrate that both movement of ChCh-compromised cells to the germ ring and acquisition of mesodermal character depend on the ability of the donor cells to respond to Nodal signals. Blocking Nodal signaling in the donor cells at the levels of Oep, Alk receptors or Fast1 inhibited migration to the germ ring and mesodermal fate change in the donor cells. We also detect additional unusual movements of transplanted ChCh-deficient cells which suggests that movement and acquisition of mesodermal character can be uncoupled. Finally, we demonstrate that ChCh is required to limit the transcriptional response to Nodal.</p> <p>Conclusion</p> <p>These data establish a broad role for ChCh in regulating both cell movement and Nodal signaling during early zebrafish development. We show that <it>chch </it>is required to limit mesodermal gene expression, inhibit Nodal-dependant movement of presumptive ectodermal cells and repress the transcriptional response to Nodal signaling. These findings reveal a dynamic role for <it>chch </it>in regulating cell movement and fate during early development.</p

    Expression of Tryptophan 2,3-Dioxygenase in Metastatic Uveal Melanoma

    Get PDF
    Uveal melanoma (UM) is the most common primary eye malignancy in adults and up to 50% of patients subsequently develop systemic metastasis. Metastatic uveal melanoma (MUM) is highly resistant to immunotherapy. One of the mechanisms for resistance would be the immune-suppressive tumor microenvironment. Here, we have investigated the role of tryptophan 2,3-dioxygenase (TDO) in UM. Both TDO and indoleamine 2,3-dioxygenase (IDO) catalyze tryptophan and produce kynurenine, which could cause inhibition of T cell immune responses. We first studied the expression of TDO on tumor tissue specimens obtained from UM hepatic metastasis. High expression of TDO protein was confirmed in all hepatic metastasis. TDO was positive in both normal hepatocytes and the tumor cells with relatively higher expression in tumor cells. On the other hand, IDO protein remained undetectable in all of the MUM specimens. UM cell lines established from metastasis also expressed TDO protein and increasing kynurenine levels were detected in the supernatant of MUM cell culture. In TCGA database, higher TDO2 expression in primary UM significantly correlated to BAP1 mutation and monosomy 3. These results indicate that TDO might be one of the key mechanisms for resistance to immunotherapy in UM

    Microrna isoforms contribution to melanoma pathogenesis

    Get PDF
    Cutaneous melanoma (CM) is the most lethal tumor among skin cancers, and its incidence is constantly increasing. A deeper understanding of the molecular processes guiding melanoma pathogenesis could improve diagnosis, treatment and prognosis. MicroRNAs play a key role in melanoma biology. Recently, next generation sequencing (NGS) experiments, designed to assess small‐RNA expression, revealed the existence of microRNA variants with different length and sequence. These microRNA isoforms are known as isomiRs and provide an additional layer to the complex non‐coding RNA world. Here, we collected data from NGS experiments to provide a comprehensive characterization of miRNA and isomiR dysregulation in benign nevi (BN) and early-stage melanomas. We observed that melanoma and BN express different and specific isomiRs and have a different isomiR abundance distribution. Moreover, isomiRs from the same microRNA can have opposite expression trends between groups. Using The Cancer Genome Atlas (TCGA) dataset of skin cancers, we analyzed isomiR expression in primary melanoma and melanoma metastasis and tested their association with NF1, BRAF and NRAS mutations. IsomiRs differentially expressed were identified and catalogued with reference to the canonical form. The reported non‐random dysregulation of specific isomiRs contributes to the understanding of the complex melanoma pathogenesis and serves as the basis for further functional studies
    corecore