research

Acute Myeloid Leukemia

Abstract

Acute myeloid leukemia (AML) is the most common type of leukemia. The Cancer Genome Atlas Research Network has demonstrated the increasing genomic complexity of acute myeloid leukemia (AML). In addition, the network has facilitated our understanding of the molecular events leading to this deadly form of malignancy for which the prognosis has not improved over past decades. AML is a highly heterogeneous disease, and cytogenetics and molecular analysis of the various chromosome aberrations including deletions, duplications, aneuploidy, balanced reciprocal translocations and fusion of transcription factor genes and tyrosine kinases has led to better understanding and identification of subgroups of AML with different prognoses. Furthermore, molecular classification based on mRNA expression profiling has facilitated identification of novel subclasses and defined high-, poor-risk AML based on specific molecular signatures. However, despite increased understanding of AML genetics, the outcome for AML patients whose number is likely to rise as the population ages, has not changed significantly. Until it does, further investigation of the genomic complexity of the disease and advances in drug development are needed. In this review, leading AML clinicians and research investigators provide an up-to-date understanding of the molecular biology of the disease addressing advances in diagnosis, classification, prognostication and therapeutic strategies that may have significant promise and impact on overall patient survival

    Similar works