168 research outputs found

    Aqueous ZrO 2 and YSZ colloidal systems through microwave assisted hydrothermal synthesis

    Get PDF
    In this paper, the formation of ZrO2 and yttria-stabilised-zirconia (YSZ) aqueous colloidal systems via microwave assisted hydrothermal synthesis is studied. Microwave synthesis allows a fast screening of the influence of different parameters such as time and temperature. The temperature varied from 140 degrees C up to 180 degrees C and the used reaction time varied from 5 min up to 1 h. The synthesised zirconia nanoparticles have a particle size of 50 nm confirmed by TEM. A H-1 NMR (nuclear magnetic resonance) study helped to understand the stabilization mechanism of the synthesised particles. By the addition of ytrrium ions into the zirconia colloidal solution, YSZ could be formed via an additional thermal treatment. Hereby, the samples are heated up to 400 degrees C for 1 h. YSZ colloidal solutions are synthesised by making use of complexing agents such as nitrilotriacetic acid, ethylenediaminetetraacetic acid and citric acid to control the hydrolysis and condensation of both ions to avoid non-stoichiometric phases. The ratio of Zr/Y in the particles is quantified by XRF. The amorphous structure of those particles necessitates an additional thermal treatment up to 600 degrees C during 1 h in order to obtain crystalline YSZ

    An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film

    Get PDF
    Optical structures fabricated on silicon-on-insulator technology provide a convenient platform for the implementation of highly compact, versatile and low cost devices. In this work, we demonstrate the promise of this technology for integrated low power and low cost optical gas sensing. A room temperature ethanol vapor sensor is demonstrated using a ZnO nanoparticle film as a coating on an SOI micro-ring resonator of 5 mu m in radius. The local coating on the ring resonators is prepared from colloidal suspensions of ZnO nanoparticles of around 3 nm diameter. The porous nature of the coating provides a large surface area for gas adsorption. The ZnO refractive index change upon vapor adsorption shifts the microring resonance through evanescent field interaction. Ethanol vapor concentrations down to 100 ppm are detected with this sensing configuration and a detection limit below 25 ppm is estimated. (C) 2009 Optical Society of Americ

    Aqueous chemical solution deposition of novel, thick and dense lattice-matched single buffer layers suitable for YBCO coated conductors : preparation and characterization

    Get PDF
    In this work we present the preparation and characterization of cerium doped lanthanum zirconate (LCZO) films and non-stoichiometric lanthanum zirconate (LZO) buffer layers on metallic Ni-5% W substrates using chemical solution deposition (CSD), starting from aqueous precursor solutions. La2Zr2O7 films doped with varying percentages of Ce at constant La concentration (La0.5CexZr1-xOy) were prepared as well as non-stoichiometric La0.5+xZr0.5-xOy buffer layers with different percentages of La and Zr ratios. The variation in the composition of these thin films enables the creation of novel buffer layers with tailored lattice parameters. This leads to different lattice mismatches with the YBa2Cu3O7-x (YBCO) superconducting layer on top and with the buffer layers or substrate underneath. This possibility of minimized lattice mismatch should allow the use of one single buffer layer instead of the current complicated buffer architectures such as Ni-(5%W)/LZO/LZO/CeO2. Here, single, crack-free LCZO and non-stoichiometric LZO layers with thicknesses of up to 140 nm could be obtained in one single CSD step. The crystallinity and microstructure of these layers were studied by XRD, and SEM and the effective buffer layer action was studied using XPS depth profiling

    Chemical solution deposition of functional ceramic coatings using ink-jet printing

    Get PDF
    This paper discusses the development of environmentally-friendly precursor inks suited for ink-jet printing of functional ceramic coatings. We synthesized superconducting materials, SrTiO3 thin films for coated conductor applications and transparent TiO2 photocatalytic coatings. Here, we discuss all aspects of ink formulation, including the stabilization of metal ions, nanoparticle inks or combination of both. This demands the investigation and determination of the inks rheological parameters. Ceramic nanoparticles are often incorporated in our inks to decrease thermal processing temperatures (e.g., TiO2 or YSZ coatings...) or enhance the properties of the functional ceramic coating (e.g., pinning centres in superconducting coatings). These ceramic nanoparticles (ZrO2, HfO2, TiO2...) are synthesized through methods based on microwave heating from aqueous and/or organic solutions. With that, we aim at developing smart and environmentally friendly processes that require lower energy input
    corecore