9 research outputs found

    Follicular lymphoma t(14;18)-negative is genetically a heterogeneous disease

    No full text
    Fifty-five cases of t(14;18)2 follicular lymphoma (FL) were genetically characterized by targeted sequencing and copy number (CN) arrays. t(14;18)2 FL predominated in women (M/F 1:2); patients often presented during early clinical stages (71%), and had excellent prognoses. Overall, t(14;18)2 FL displayed CN alterations (CNAs) and gene mutations carried by conventional t(14;18)1 FL (cFL), but with different frequencies. The most frequently mutated gene was STAT6 (57%) followed by CREBBP (49%), TNFRSF14 (39%), and KMT2D (27%). t(14;18)2 FL showed significantly more STAT6 mutations and lacked MYD88, NOTCH2, MEF2B, and MAP2K1 mutations compared with cFL, nodal marginal zone lymphoma (NMZL), and pediatric-type FL (PTFL). We identified 2 molecular clusters. Cluster A was characterized by TNFRSF14 mutations/1p36 alterations (96%) and frequent mutations in epigenetic regulators, with recurrent loss of 6q21-24 sharing many features with cFL. Cluster B showed few genetic alterations; however, a subgroup with STAT6 mutations concurrent with CREBBP mutations/16p alterations without TNFRSF14 and EZH2 mutations was noted (65%). These 2 molecular clusters did not distinguish cases by inguinal localization, growth pattern, or presence of STAT6 mutations. BCL6 rearrangements were demonstrated in 10 of 45 (22%) cases and did not cluster together. Cases with predominantly inguinal presentation (20 of 50; 40%) had a higher frequency of diffuse growth pattern, STAT6 mutations, CD23 expression, and a lower number of CNAs, in comparison with noninguinal cases (5.1 vs 9.1 alterations per case; P,.05). STAT6 mutations showed a positive correlation with CD23 expression (P,.001). In summary, t(14;18)2 FL is genetically a heterogeneous disorder with features that differ from cFL, NMZL, and PTFL

    Powerful strategy for polymerase chain reaction-based clonality assessment in T-cell malignancies Report of the BIOMED-2 Concerted Action BHM4 CT98-3936.

    No full text
    Contains fulltext : 51510.pdf (publisher's version ) (Closed access)Polymerase chain reaction (PCR) assessment of clonal T-cell receptor (TCR) and immunoglobulin (Ig) gene rearrangements is an important diagnostic tool in mature T-cell neoplasms. However, lack of standardized primers and PCR protocols has hampered comparability of data in previous clonality studies. To obtain reference values for Ig/TCR rearrangement patterns, 19 European laboratories investigated 188 T-cell malignancies belonging to five World Health Organization-defined entities. The TCR/Ig spectrum of each sample was analyzed in duplicate in two different laboratories using the standardized BIOMED-2 PCR multiplex tubes accompanied by international pathology panel review. TCR clonality was detected in 99% (143/145) of all definite cases of T-cell prolymphocytic leukemia, T-cell large granular lymphocytic leukemia, peripheral T-cell lymphoma (unspecified) and angioimmunoblastic T-cell lymphoma (AILT), whereas nine of 43 anaplastic large cell lymphomas did not show clonal TCR rearrangements. Combined use of TCRB and TCRG genes revealed two or more clonal signals in 95% of all TCR clonal cases. Ig clonality was mostly restricted to AILT. Our study indicates that the BIOMED-2 multiplex PCR tubes provide a powerful strategy for clonality assessment in T-cell malignancies assisting the firm diagnosis of T-cell neoplasms. The detected TCR gene rearrangements can also be used as PCR targets for monitoring of minimal residual disease.7 p

    Molecular genetics of peripheral T-cell lymphomas

    No full text
    Peripheral T-cell lymphomas (PTCL) are rare neoplasms that in most instances respond poorly to conventional chemotherapies. Four varieties-PTCL not otherwise specified (NOS), angioimmunoblastic T-cell lymphoma (AITL), ALK+ anaplastic T-cell lymphoma (ALCL), and ALK- ALCL-account for about 60 % of them. Their classification is difficult because of the wide spectrum of morphologic features and the lack of robust immunohistochemical markers. Thus, high-throughput technologies can importantly contribute to their better understanding. In particular, gene expression profiling has cleared the borders among PTCL/NOS, ALK- ALCL and AITL. In fact, gene signatures have been developed even from formalin-fixed paraffin-embedded tissue samples that definitely distinguish one tumor from the other(s). This has important practical implications: for instance on routine diagnostics PTCL/NOS expressing CD30 can be easily confused with ALK- ALCL, but has a much worse prognosis. Therefore, the clear-cut distinction between the two conditions is pivotal to understand the results of ongoing trials with Brentuximab Vedotin, targeting the CD30 molecule. Besides improving the diagnosis, molecular studies have provided the rationale for the usage of novel drugs in the setting of PTCLs, such as ALK inhibitors in ALK+ ALCL, anti-angiogenetic drugs in AITL, and tyrosine kinase inhibitors in PTCL/NOS and ALK+ and ALK- ALCLs. \uc2\ua9 2014 The Japanese Society of Hematology
    corecore