36 research outputs found

    PCDTBT: From Polymer Photovoltaics to Light-Emitting Diodes by Side-Chain-Controlled Luminescence

    Get PDF
    Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT) is a copolymer composed of alternating thiophene-benzothiadiazole-thiophene (TBT) and carbazole (Cbz) repeat units widely used for stable organic photovoltaics. However, the solubility of PCDTBT is limited, which decreases polymer yield and makes synthesis and purification tedious. Here, we introduce a strategy to increase both solubility and luminescence by the statistical incorporation of additional hexyl side chains at the TBT unit (hex-TBT). An increasing amount of hex-TBT as comonomer from 0 to 100% enhances solubility, leads to backbone torsion, and causes a blue-shift in the absorption and emission spectra. While photovoltaic performance of both PCDTBT:P3HT blends and PCDTBT:PC71_{71}BM blends decreases with increasing content of hex-TBT due to weaker and blue-shifted absorption, the luminescence properties can be systematically improved. Both photo- and electroluminescence (PL and EL) quantum efficiencies increase with increasing hex-TBT content. We further demonstrate solution-processed red polymer light-emitting diodes based on fully hexylated PCDTBT showing an EL quantum efficiency enhancement of up to 7 times and 2 orders of magnitude enhancement of brightness compared to standard PCDTBT. Fully hexylated PCDTBT shows a peak external quantum efficiency of 1.1% and a peak brightness of 2500 cd/m2Financial support from the Fonds der Chemischen Industrie (FCI), the Research Innovation Fund of the University of Freiburg and the DFG (SPP1355) is greatly acknowledged. F.L. greatly acknowledges the EPSRC for funding. D.D. acknowledges the Department of Physics (University of Cambridge) and the KACST-Cambridge University Joint Centre of Excellence for support

    High molecular weight mechanochromic spiropyran main chain copolymers via reproducible microwave-assisted Suzuki polycondensation

    Get PDF
    Suzuki-Miyaura polycondensation (SPC) is widely used to prepare a variety of copolymers for a broad range of applications. Although SPC protocols are often used in many instances, the limits of this method and issues of molecular weight reproducibility are not often looked at in detail. By using a spiropyran-based (SP) mechanochromic copolymer, we present an optimized protocol for the microwave-assisted synthesis of a mechanochromic, alternating copolymer P(SP-alt-C-10) via SPC that allows the reproduction of molecular weight distributions. Several parameters such as microwave power, temperature, stoichiometry, and ligand are screened, leading to molecular weights up to M-w similar to 174 kg mol(-1). The process of optimization is guided by NMR end group analysis which shows that dehalogenation, oxidative deborylation and SP cleavage are the limiting factors that impede further increase of molar mass, while other classical side reactions such as protiodeborylation are not observed. Embossing films of P(SP-alt-C-10) yields the colored merocyanine (MC) copolymer P(MC-alt-C-10) that undergoes a thermally facilitated back reaction to P(SP-alt-C-10). DFT suggests that the barrier of the SP -> MC transition has two contributions, with the first one being related to the color change and the second one to internal bond reorganizations. The barrier height is 1.5 eV, which suggests that the ease of the thermally facilitated back reaction is either due to residual energy stored in the deformed polymer matrix, or arises from an MC isomer that is not in the thermodynamically most stable state
    corecore