6,417 research outputs found

    Closed time path approach to the Casimir energy in real media

    Get PDF
    The closed time path formalism is applied, in the framework of open quantum systems, to study the time evolution of the expectation value of the energy-momentum tensor of a scalar field in the presence of real materials. We analyze quantum fluctuations in a fully non-equilibrium scenario, when the scalar field is interacting with the polarization degrees of freedom of matter, described as quantum Brownian particles. A generalized analysis was done for two types of couplings between the field and the material. On the one hand, we considered a bilinear coupling, and on the other hand, a (more realistic) current-type coupling as in the case of the electromagnetic field interacting with matter. We considered the high temperature limit for the field, keeping arbitrary temperatures for each part of the volume elements of the material. We obtained a closed form for the Hadamard propagator, which let us study the dynamical evolution of the expectations values of the energy-momentum tensor components from the initial time. We showed that two contributions always take place in the transient evolution: one of these is associated to the material and the other one is only associated to the field. Transient features were studied and the long-time limit was derived in several cases. We proved that in the steady situation of a field in n + 1 dimensions, the material always contribute unless is non-dissipative. Conversely, the proper field contribution vanishes unless the material is non-dissipative or, moreover, at least for the 1 + 1 case, if there are regions without material. We conclude that any steady quantization scheme in 1 + 1 dimensions must consider both contributions and we argue why these results are physically expected from a dynamical point of view, and also could be valid for higher dimensions based on the expected continuity between the non-dissipative and real material cases.Comment: 28 pages, no figures. Version to appear in Phys. Rev.

    Evidence for a conformal phase in SU(N) gauge theories

    Get PDF
    We discuss the existence of a conformal phase in SU(N) gauge theories in four dimensions. In this lattice study we explore the model in the bare parameter space, varying the lattice coupling and bare mass. Simulations are carried out with three colors and twelve flavors of dynamical staggered fermions in the fundamental representation. The analysis of the chiral order parameter and the mass spectrum of the theory indicates the restoration of chiral symmetry at zero temperature and the presence of a Coulomb-like phase, depicting a scenario compatible with the existence of an infrared stable fixed point at nonzero coupling. Our analysis supports the conclusion that the onset of the conformal window for QCD-like theories is smaller than Nf=12, before the loss of asymptotic freedom at sixteen and a half flavors. We discuss open questions and future directions.Comment: 11 pages, 11 figures; extended analysis, conclusions unchanged. (version to appear in PRD

    QCD in One Dimension at Nonzero Chemical Potential

    Get PDF
    Using an integration formula recently derived by Conrey, Farmer and Zirnbauer, we calculate the expectation value of the phase factor of the fermion determinant for the staggered lattice QCD action in one dimension. We show that the chemical potential can be absorbed into the quark masses; the theory is in the same chiral symmetry class as QCD in three dimensions at zero chemical potential. In the limit of a large number of colors and fixed number of lattice points, chiral symmetry is broken spontaneously, and our results are in agreement with expressions based on a chiral Lagrangian. In this limit, the eigenvalues of the Dirac operator are correlated according to random matrix theory for QCD in three dimensions. The discontinuity of the chiral condensate is due to an alternative to the Banks-Casher formula recently discovered for QCD in four dimensions at nonzero chemical potential. The effect of temperature on the average phase factor is discussed in a schematic random matrix model.Comment: Latex, 23 pages and 5 figures; Added two references and corrected several typo

    A Monte Carlo study of temperature-programmed desorption spectra with attractive lateral interactions

    Get PDF
    We present results of a Monte Carlo study of temperature-programmed desorption in a model system with attractive lateral interactions. It is shown that even for weak interactions there are large shifts of the peak maximum temperatures with initial coverage. The system has a transition temperature below which the desorption has a negative order. An analytical expression for this temperature is derived. The relation between the model and real systems is discussed.Comment: Accepted for publication in Phys.Rev.B15, 10 pages (REVTeX), 2 figures (PostScript); discussion about Xe/Pt(111) adde

    Nuclear Pairing in the T=0 channel revisited

    Get PDF
    Recent published data on the isoscalar gap in symmetric nuclear matter using the Paris force and the corresponding BHF single particle dispersion are corrected leading to an extremely high proton-neutron gap of Δ8\Delta \sim 8 MeV at ρ0.5ρ0\rho \sim 0.5\rho_0. Arguments whether this value can be reduced due to screening effects are discussed. A density dependent delta interaction with cut off is adjusted so as to approximately reproduce the nuclear matter values with the Paris force.Comment: 4 pages, 4 figure
    corecore