81 research outputs found

    A Blockchain-Based Solution for Enabling Log-Based Resolution of Disputes in Multi-party Transactions

    Get PDF
    We are witnessing an ongoing global trend towards the automation of almost any transaction through the employment of some Internet-based mean. Furthermore, the large spread of cloud computing and the massive emergence of the software as a service (Saas) paradigm have unveiled many opportunities to combine distinct services, provided by different parties, to establish higher level and more advanced services, that can be offered to end users and enterprises. Business-to-business (B2B) integration and third-party authorization (i.e. using standards like OAuth) are examples of processes requiring more parties to interact with each other to deliver some desired functionality. These kinds of interactions mostly consist of transactions and are usually regulated by some agreement which defines the obligations that involved parties have to comply with. In case one of the parties claims a violation of some clause of such agreement, disputes can occur if the party accused of the infraction refuses to recognize its fault. Moreover, in case of auditing, for convenience reasons a party may deny to have taken part in a given transaction, or may forge historical records related to that transaction. Solutions based on a trusted third party (TTP) have drawbacks: high overhead due to the involvement of an additional party, possible fees to pay for each transaction, and the risks stemming from having to blindly trust another party. If it were possible to only base on transaction logs to sort disputes out, then it would be feasible to get rid of any TTP and related shortcomings. In this paper we propose SLAVE, a blockchain-based solution which does not require any TTP. Storing transactions in a public blockchain like Bitcoin’s or Ethereum’s provides strong guarantees on transactions’ integrity, hence they can be actually used as proofs when controversies arise. The solution we propose defines how to embed transaction logs in a public blockchain, so that each involved party can verify the identity of the others while keeping confident the content of transactions

    Giant depolarizing potentials trigger transient changes in the intracellular Cl(-) concentration in CA3 pyramidal neurons of the immature mouse hippocampus

    Get PDF
    Giant depolarizing potentials (GDPs) represent a typical spontaneous activity pattern in the immature hippocampus. GDPs are mediated by GABAergic and glutamatergic synaptic inputs and their initiation requires an excitatory GABAergic action, which is typical for immature neurons due to their elevated intracellular Cl(-) concentration ([Cl(-)](i)). Because GABA(A) receptors are ligand gated Cl(-) channels, activation of these receptors can potentially influence [Cl(-)](i). However, whether the GABAergic activity during GDPs influences [Cl(-)](i) is unclear. To address this question we performed whole-cell and gramicidin-perforated patch-clamp recordings from visually identified CA3 pyramidal neurons in immature hippocampal slices of mice at postnatal days 4-7. These experiments revealed that the [Cl(-)](i) of CA3 neurons displays a considerable heterogeneity, ranging from 13 to 70 mM (average 38.1 ± 3.2 mM, n = 36). In accordance with this diverse [Cl(-)] (i), GDPs induced either Cl(-)-effluxes or Cl(-)-influxes. In high [Cl(-)](i) neurons with a negative Cl(-)-driving force (DF(Cl)) the [Cl(-)](i) decreased after a GDP by 12.4 ± 3.4 mM (n = 10), while in low [Cl(-)](i) neurons with a positive DF(Cl) [Cl(-)](i) increased by 4.4 ± 0.9 mM (n = 6). Inhibition of GDP activity by application of the AMPA receptor antagonist CNQX led to a [Cl(-)](i) decrease to 24.7 ± 2.9 mM (n = 8). We conclude from these results, that Cl(-)-fluxes via GABA(A) receptors during GDPs induced substantial [Cl(-)](i) changes and that this activity dependent ionic plasticity in neuronal [Cl(-)](i) contributes to the functional consequences o

    PBFT vs proof-of-authority: Applying the CAP theorem to permissioned blockchain

    Get PDF
    Permissioned blockchains are arising as a solution to federate companies prompting accountable interactions. A variety of consensus algorithms for such blockchains have been proposed, each of which has different benefits and drawbacks. Proof-of-Authority (PoA) is a new family of Byzantine fault-tolerant (BFT) consensus algorithms largely used in practice to ensure better performance than traditional Practical Byzantine Fault Tolerance (PBFT). However, the lack of adequate analysis of PoA hinders any cautious evaluation of their effectiveness in real-world permissioned blockchains deployed over the Internet, hence on an eventually synchronous network experimenting Byzantine nodes. In this paper, we analyse two of the main PoA algorithms, named Aura and Clique, both in terms of provided guarantees and performances. First, we derive their functioning including how messages are exchanged, then we weight, by relying on the CAP theorem, consistency, availability and partition tolerance guarantees. We also report a qualitative latency analysis based on message rounds. The analysis advocates that PoA for permissioned blockchains, deployed over the Internet with Byzantine nodes, do not provide adequate consistency guarantees for scenarios where data integrity is essential. We claim that PBFT can fit better such scenarios, despite a limited loss in terms of performance

    Giant Depolarizing Potentials Trigger Transient Changes in the Intracellular Cl- Concentration in CA3 Pyramidal Neurons of the Immature Mouse Hippocampus

    Get PDF
    Giant depolarizing potentials (GDPs) represent a typical spontaneous activity pattern in the immature hippocampus. GDPs are mediated by GABAergic and glutamatergic synaptic inputs and their initiation requires an excitatory GABAergic action, which is typical for immature neurons due to their elevated intracellular Cl- concentration ([Cl-]i). Because GABAA receptors are ligand-gated Cl- channels, activation of these receptors can potentially influence [Cl-]i. However, whether the GABAergic activity during GDPs influences [Cl-]i is unclear. To address this question we performed whole-cell and gramicidin-perforated patch-clamp recordings from visually identified CA3 pyramidal neurons in immature hippocampal slices of mice at postnatal days 4–7. These experiments revealed that the [Cl-]i of CA3 neurons displays a considerable heterogeneity, ranging from 13 to 70 mM (average 38.1 ± 3.2 mM, n = 36). In accordance with this diverse [Cl-]i, GDPs induced either Cl--effluxes or Cl--influxes. In high [Cl-]i neurons with a negative Cl--driving force (DFCl) the [Cl-]i decreased after a GDP by 12.4 ± 3.4 mM (n = 10), while in low [Cl-]i neurons with a positive DFCl [Cl-]i increased by 4.4 ± 0.9 mM (n = 6). Inhibition of GDP activity by application of the AMPA receptor antagonist CNQX led to a [Cl-]i decrease to 24.7 ± 2.9 mM (n = 8). We conclude from these results, that Cl--fluxes via GABAA receptors during GDPs induced substantial [Cl-]i changes and that this activity-dependent ionic plasticity in neuronal [Cl-]i contributes to the functional consequences of GABAergic responses, emphasizing the concept that [Cl-]i is a state- and compartment-dependent parameter of individual cells

    Recovery kinetics of short-term depression of GABAergic and glutamatergic synapses at layer 2/3 pyramidal cells in the mouse barrel cortex

    Get PDF
    IntroductionShort-term synaptic plasticity (STP) is a widespread mechanism underlying activity-dependent modifications of cortical networks.MethodsTo investigate how STP influences excitatory and inhibitory synapses in layer 2/3 of mouse barrel cortex, we combined whole-cell patch-clamp recordings from visually identified pyramidal neurons (PyrN) and parvalbumin-positive interneurons (PV-IN) of cortical layer 2/3 in acute slices with electrical stimulation of afferent fibers in layer 4 and optogenetic activation of PV-IN.ResultsThese experiments revealed that electrical burst stimulation (10 pulses at 10 Hz) of layer 4 afferents to layer 2/3 neurons induced comparable short-term depression (STD) of glutamatergic postsynaptic currents (PSCs) in PyrN and in PV-IN, while disynaptic GABAergic PSCs in PyrN showed a stronger depression. Burst-induced depression of glutamatergic PSCs decayed within <4 s, while the decay of GABAergic PSCs required >11 s. Optogenetically-induced GABAergic PSCs in PyrN also demonstrated STD after burst stimulation, with a decay of >11 s. Excitatory postsynaptic potentials (EPSPs) in PyrN were unaffected after electrical burst stimulation, while a selective optogenetic STD of GABAergic synapses caused a transient increase of electrically evoked EPSPs in PyrN.DiscussionIn summary, these results demonstrate substantial short-term plasticity at all synapses investigated and suggest that the prominent STD observed in GABAergic synapses can moderate the functional efficacy of glutamatergic STD after repetitive synaptic stimulations. This mechanism may contribute to a reliable information flow toward the integrative layer 2/3 for complex time-varying sensory stimuli

    A lower bound on intergalactic magnetic fields from time variability of 1ES 0229+200 from MAGIC and Fermi/LAT observations

    Full text link
    Extended and delayed emission around distant TeV sources induced by the effects of propagation of gamma rays through the intergalactic medium can be used for the measurement of the intergalactic magnetic field (IGMF). We search for delayed GeV emission from the hard-spectrum TeV blazar 1ES 0229+200 with the goal to detect or constrain the IGMF-dependent secondary flux generated during the propagation of TeV gamma rays through the intergalactic medium. We analyze the most recent MAGIC observations over a 5 year time span and complement them with historic data of the H.E.S.S. and VERITAS telescopes along with a 12-year long exposure of the Fermi/LAT telescope. We use them to trace source evolution in the GeV-TeV band over one-and-a-half decade in time. We use Monte Carlo simulations to predict the delayed secondary gamma-ray flux, modulated by the source variability, as revealed by TeV-band observations. We then compare these predictions for various assumed IGMF strengths to all available measurements of the gamma-ray flux evolution. We find that the source flux in the energy range above 200 GeV experiences variations around its average on the 14 years time span of observations. No evidence for the flux variability is found in 1-100 GeV energy range accessible to Fermi/LAT. Non-detection of variability due to delayed emission from electromagnetic cascade developing in the intergalactic medium imposes a lower bound of B>1.8e-17 G for long correlation length IGMF and B>1e-14 G for an IGMF of the cosmological origin. Though weaker than the one previously derived from the analysis of Fermi/LAT data, this bound is more robust, being based on a conservative intrinsic source spectrum estimate and accounting for the details of source variability in the TeV energy band. We discuss implications of this bound for cosmological magnetic fields which might explain the baryon asymmetry of the Universe.Comment: 10 pages, 5 figures, accepted to A&A. Corresponding authors: Ievgen Vovk, Paolo Da Vela (mailto:[email protected]) and Andrii Neronov (mailto:[email protected]

    Long-term multi-wavelength study of 1ES 0647+250

    Get PDF
    The BL Lac object 1ES 0647+250 is one of the few distant γ\gamma-ray emitting blazars detected at very high energies (VHE, \gtrsim100 GeV) during a non-flaring state. It was detected with the MAGIC telescopes during its low activity in the years 2009-2011, as well as during three flaring activities in the years 2014, 2019 and 2020, with the highest VHE flux in the latter epoch. An extensive multi-instrument data set was collected within several coordinated observing campaigns throughout these years. We aim to characterise the long-term multi-band flux variability of 1ES 0647+250, as well as its broadband spectral energy distribution (SED) during four distinct activity states selected in four different epochs, in order to constrain the physical parameters of the blazar emission region under certain assumptions. We evaluate the variability and correlation of the emission in the different energy bands with the fractional variability and the Z-transformed Discrete Correlation Function, as well as its spectral evolution in X-rays and γ\gamma rays. Owing to the controversy in the redshift measurements of 1ES 0647+250 reported in the literature, we also estimate its distance in an indirect manner through the comparison of the GeV and TeV spectra from simultaneous observations with Fermi-LAT and MAGIC during the strongest flaring activity detected to date. Moreover, we interpret the SEDs from the four distinct activity states within the framework of one-component and two-component leptonic models, proposing specific scenarios that are able to reproduce the available multi-instrument data.Comment: 20 pages, 7 figures. Accepted in A&A. Corresponding authors: Jorge Otero-Santos; Daniel Morcuende; Vandad Fallah Ramazani; Daniela Dorner; David Paneque (mailto: [email protected]

    MAGIC observations provide compelling evidence of hadronic multi-TeV emission from the putative PeVatron SNR G106.3+2.7

    Get PDF
    Context. Certain types of supernova remnants (SNRs) in our Galaxy are assumed to be PeVatrons, capable of accelerating cosmic rays (CRs) to ∼ PeV energies. However, conclusive observational evidence for this has not yet been found. The SNR G106.3+2.7, detected at 1- 100 TeV energies by different γ-ray facilities, is one of the most promising PeVatron candidates. This SNR has a cometary shape, which can be divided into a head and a tail region with different physical conditions. However, in which region the 100 TeV emission is produced has not yet been identified because of the limited position accuracy and/or angular resolution of existing observational data. Additionally, it remains unclear as to whether the origin of the γ-ray emission is leptonic or hadronic. Aims. With the better angular resolution provided by new MAGIC data compared to earlier γ-ray datasets, we aim to reveal the acceleration site of PeV particles and the emission mechanism by resolving the SNR G106.3+2.7 with 0.1 resolution at TeV energies. Methods. We observed the SNR G106.3+2.7 using the MAGIC telescopes for 121.7 h in total - after quality cuts - between May 2017 and August 2019. The analysis energy threshold is ∼0.2 TeV, and the angular resolution is 0.07-0.1. We examined the γ-ray spectra of different parts of the emission, whilst benefitting from the unprecedented statistics and angular resolution at these energies provided by our new data. We also used measurements at other wavelengths such as radio, X-rays, GeV γ-rays, and 10 TeV γ-rays to model the emission mechanism precisely. Results. We detect extended γ-ray emission spatially coincident with the radio continuum emission at the head and tail of SNR G106.3+2.7. The fact that we detect a significant γ-ray emission with energies above 6.0 TeV from only the tail region suggests that the emissions above 10 TeV detected with air shower experiments (Milagro, HAWC, Tibet ASγ and LHAASO) are emitted only from the SNR tail. Under this assumption, the multi-wavelength spectrum of the head region can be explained with either hadronic or leptonic models, while the leptonic model for the tail region is in contradiction with the emission above 10 TeV and X-rays. In contrast, the hadronic model could reproduce the observed spectrum at the tail by assuming a proton spectrum with a cutoff energy of ∼1 PeV for that region. Such high-energy emission in this middle-aged SNR (4-10 kyr) can be explained by considering a scenario where protons escaping from the SNR in the past interact with surrounding dense gases at present. Conclusions. The γ-ray emission region detected with the MAGIC telescopes in the SNR G106.3+2.7 is extended and spatially coincident with the radio continuum morphology. The multi-wavelength spectrum of the emission from the tail region suggests proton acceleration up to ∼PeV, while the emission mechanism of the head region could either be hadronic or leptonic

    MAGIC observations provide compelling evidence of the hadronic multi-TeV emission from the putative PeVatron SNR G106.3+2.7

    Get PDF
    The SNR G106.3+2.7, detected at 1--100 TeV energies by different γ\gamma-ray facilities, is one of the most promising PeVatron candidates. This SNR has a cometary shape which can be divided into a head and a tail region with different physical conditions. However, it is not identified in which region the 100 TeV emission is produced due to the limited position accuracy and/or angular resolution of existing observational data. Additionally, it remains unclear whether the origin of the γ\gamma-ray emission is leptonic or hadronic. With the better angular resolution provided by these new MAGIC data compared to earlier γ\gamma-ray datasets, we aim to reveal the acceleration site of PeV particles and the emission mechanism by resolving the SNR G106.3+2.7 with 0.1^\circ resolution at TeV energies. We detected extended γ\gamma-ray emission spatially coincident with the radio continuum emission at the head and tail of SNR G106.3+2.7. The fact that we detected a significant γ\gamma-ray emission with energies above 6.0 TeV from the tail region only suggests that the emissions above 10 TeV, detected with air shower experiments (Milagro, HAWC, Tibet ASγ\gamma and LHAASO), are emitted only from the SNR tail. Under this assumption, the multi-wavelength spectrum of the head region can be explained with either hadronic or leptonic models, while the leptonic model for the tail region is in contradiction with the emission above 10 TeV and X-rays. In contrast, the hadronic model could reproduce the observed spectrum at the tail by assuming a proton spectrum with a cutoff energy of 1\sim 1 PeV for the tail region. Such a high energy emission in this middle-aged SNR (4--10 kyr) can be explained by considering the scenario that protons escaping from the SNR in the past interact with surrounding dense gases at present.Comment: 13 pages, 7 figures, Accepted for publication in A&

    Investigating the blazar TXS 0506+056 through sharp multi-wavelength eyes during 2017-2019

    Get PDF
    The blazar TXS 0506+056 got into the spotlight of the astrophysical community in September 2017, when a high-energy neutrino detected by IceCube (IceCube-170922A) was associated at the 3 σ\sigma level to a γ\gamma-ray flare from this source. This multi-messenger photon-neutrino association remains, as per today, the most significant one ever observed. TXS 0506+056 was a poorly studied object before the IceCube-170922A event. To better characterize its broad-band emission, we organized a multi-wavelength campaign lasting 16 months (November 2017 to February 2019), covering the radio-band (Mets\"ahovi, OVRO), the optical/UV (ASAS-SN, KVA, REM, Swift/UVOT), the X-rays (Swift/XRT, NuSTAR), the high-energy γ\gamma rays (Fermi/LAT) and the very-high-energy (VHE) γ\gamma rays (MAGIC). In γ\gamma rays, the behaviour of the source was significantly different from the 2017 one: MAGIC observations show the presence of flaring activity during December 2018, while the source only shows an excess at the 4σ\sigma level during the rest of the campaign (74 hours of accumulated exposure); Fermi/LAT observations show several short (days-to-week timescale) flares, different from the long-term brightening of 2017. No significant flares are detected at lower energies. The radio light curve shows an increasing flux trend, not seen in other wavelengths. We model the multi-wavelength spectral energy distributions in a lepto-hadronic scenario, in which the hadronic emission emerges as Bethe-Heitler and pion-decay cascade in the X-rays and VHE γ\gamma rays. According to the model presented here, the December 2018 γ\gamma-ray flare was connected to a neutrino emission that was too brief and not bright enough to be detected by current neutrino instruments.Comment: 18 pages, 6 figures; in press in Ap
    corecore