58 research outputs found
Modeling the Optical to Ultraviolet Polarimetric Variability from Thomson Scattering in Colliding-wind Binaries
peer reviewedAbstract
Massive-star binaries are critical laboratories for measuring masses and stellar wind mass-loss rates. A major challenge is inferring viewing inclination and extracting information about the colliding-wind interaction (CWI) region. Polarimetric variability from electron scattering in the highly ionized winds provides important diagnostic information about system geometry. We combine for the first time the well-known generalized treatment of Brown et al. for variable polarization from binaries with the semianalytic solution for the geometry and surface density CWI shock interface between the winds based on Cantó et al. Our calculations include some simplifications in the form of inverse-square law wind densities and the assumption of axisymmetry, but in so doing they arrive at several robust conclusions. One is that when the winds are nearly equal (e.g., O+O binaries) the polarization has a relatively mild decline with binary separation. Another is that despite Thomson scattering being a gray opacity, the continuum polarization can show chromatic effects at ultraviolet wavelengths but will be mostly constant at longer wavelengths. Finally, when one wind dominates the other, as, for example, in WR+OB binaries, the polarization is expected to be larger at wavelengths where the OB component is more luminous and generally smaller at wavelengths where the WR component is more luminous. This behavior arises because, from the perspective of the WR star, the distortion of the scattering envelope from spherical is a minor perturbation situated far from the WR star. By contrast, the polarization contribution from the OB star is dominated by the geometry of the CWI shock
UV Spectropolarimetry with Polstar: Massive Star Binary Colliding Winds
The winds of massive stars are important for their direct impact on the
interstellar medium, and for their influence on the final state of a star prior
to it exploding as a supernova. However, the dynamics of these winds is
understood primarily via their illumination from a single central source. The
Doppler shift seen in resonance lines is a useful tool for inferring these
dynamics, but the mapping from that Doppler shift to the radial distance from
the source is ambiguous. Binary systems can reduce this ambiguity by providing
a second light source at a known radius in the wind, seen from orbitally
modulated directions. From the nature of the collision between the winds, a
massive companion also provides unique additional information about wind
momentum fluxes. Since massive stars are strong ultraviolet (UV) sources, and
UV resonance line opacity in the wind is strong, UV instruments with a high
resolution spectroscopic capability are essential for extracting this dynamical
information. Polarimetric capability also helps to further resolve ambiguities
in aspects of the wind geometry that are not axisymmetric about the line of
sight, because of its unique access to scattering direction information. We
review how the proposed MIDEX-scale mission Polstar can use UV
spectropolarimetric observations to critically constrain the physics of
colliding winds, and hence radiatively-driven winds in general. We propose a
sample of 20 binary targets, capitalizing on this unique combination of
illumination by companion starlight, and collision with a companion wind, to
probe wind attributes over a range in wind strengths. Of particular interest is
the hypothesis that the radial distribution of the wind acceleration is altered
significantly, when the radiative transfer within the winds becomes optically
thick to resonance scattering in multiple overlapping UV lines.Comment: 26 pages, 12 figures, Review in a topical collection series of
Astrophysics and Space Sciences on the proposed Polstar satellite. arXiv
admin note: substantial text overlap with arXiv:2111.1155
V444 Cygni X-ray and polarimetric variability: radiative and coriolis forces shape the wind collision region
We present results from a study of the eclipsing, colliding-wind binary V444 Cyg that uses a combination of X-ray and optical spectropolarimetric methods to describe the 3D nature of the shock and wind structure within the system. We have created the most complete X-ray light curve of V444 Cyg to date using 40 ks of new data from Swift, and 200 ks of new and archived XMM-Newton observations. In addition, we have characterized the intrinsic, polarimetric phase-dependent behavior of the strongest optical emission lines using data obtained with the University of Wisconsin's Half-Wave Spectropolarimeter. We have detected evidence of the Coriolis distortion of the wind-wind collision in the X-ray regime, which manifests itself through asymmetric behavior around the eclipses in the system's X-ray light curves. The large opening angle of the X-ray emitting region, as well as its location (i.e. the WN wind does not collide with the O star, but rather its wind) are evidence of radiative braking/inhibition occurring within the system. Additionally, the polarimetric results show evidence of the cavity the wind-wind collision region carves out of the Wolf-Rayet star's wind
Ultraviolet spectropolarimetry: conservative and nonconservative mass transfer in OB interacting binaries
peer reviewe
Ultraviolet spectropolarimetry: conservative and nonconservative mass transfer in OB interacting binaries
peer reviewe
Noncanonical DNA Motifs as Transactivation Targets by Wild Type and Mutant p53
Sequence-specific binding by the human p53 master regulator is critical to its tumor suppressor activity in response to environmental stresses. p53 binds as a tetramer to two decameric half-sites separated by 0–13 nucleotides (nt), originally defined by the consensus RRRCWWGYYY (n = 0–13) RRRCWWGYYY. To better understand the role of sequence, organization, and level of p53 on transactivation at target response elements (REs) by wild type (WT) and mutant p53, we deconstructed the functional p53 canonical consensus sequence using budding yeast and human cell systems. Contrary to early reports on binding in vitro, small increases in distance between decamer half-sites greatly reduces p53 transactivation, as demonstrated for the natural TIGER RE. This was confirmed with human cell extracts using a newly developed, semi–in vitro microsphere binding assay. These results contrast with the synergistic increase in transactivation from a pair of weak, full-site REs in the MDM2 promoter that are separated by an evolutionary conserved 17 bp spacer. Surprisingly, there can be substantial transactivation at noncanonical ½-(a single decamer) and ¾-sites, some of which were originally classified as biologically relevant canonical consensus sequences including PIDD and Apaf-1. p53 family members p63 and p73 yielded similar results. Efficient transactivation from noncanonical elements requires tetrameric p53, and the presence of the carboxy terminal, non-specific DNA binding domain enhanced transactivation from noncanonical sequences. Our findings demonstrate that RE sequence, organization, and level of p53 can strongly impact p53-mediated transactivation, thereby changing the view of what constitutes a functional p53 target. Importantly, inclusion of ½- and ¾-site REs greatly expands the p53 master regulatory network
Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial
Background
Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear.
Methods
RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047.
Findings
Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths.
Interpretation
Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population
Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial
Background
Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain.
Methods
RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and
ClinicalTrials.gov
,
NCT00541047
.
Findings
Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths.
Interpretation
Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy.
Funding
Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society
- …