15 research outputs found

    EEG Evaluation of Stress Exposure on Healthcare Workers During COVID-19 Emergency: Not Just an Impression

    Get PDF
    Psychological distress among healthcare professionals, although already a common condition, was exacerbated by the COVID-19 pandemic. This effect has been generally self-reported or assessed through questionnaires. We aimed to identify potential abnormalities in the electrical activity of the brain of healthcare workers, operating in different roles during the pandemic. Cortical activity, cognitive performances, sleep, and burnout were evaluated two times in 20 COVID-19 frontline operators (FLCO, median age 29.5 years) and 20 operators who worked in COVID-19-free units (CFO, median 32 years): immediately after the outbreak of the pandemic (first session) and almost 6 months later (second session). FLCO showed higher theta relative power over the entire scalp (FLCO = 19.4%; CFO = 13.9%; p = 0.04) and lower peak alpha frequency of electrodes F7 (FLCO = 10.4 Hz; CFO = 10.87 Hz; p = 0.017) and F8 (FLCO = 10.47 Hz; CFO = 10.87 Hz; p = 0.017) in the first session. FLCO parietal interhemispheric coherence of theta (FLCO I = 0.607; FLCO II = 0.478; p = 0.025) and alpha (FLCO I = 0.578; FLCO II = 0.478; p = 0.007) rhythms decreased over time. FLCO also showed lower scores in the global cognitive assessment test (FLCO = 22.72 points; CFO = 25.56; p = 0.006) during the first session. The quantitative evaluation of the cortical activity might therefore reveal early signs of changes secondary to stress exposure in healthcare professionals, suggesting the implementation of measures to prevent serious social and professional consequences

    Rib Cage Deformities Alter Respiratory Muscle Action and Chest Wall Function in Patients with Severe Osteogenesis Imperfecta

    Get PDF
    Osteogenesis imperfecta (OI) is an inherited connective tissue disorder characterized by bone fragility, multiple fractures and significant chest wall deformities. Cardiopulmonary insufficiency is the leading cause of death in these patients.Seven patients with severe OI type III, 15 with moderate OI type IV and 26 healthy subjects were studied. In addition to standard spirometry, rib cage geometry, breathing pattern and regional chest wall volume changes at rest in seated and supine position were assessed by opto-electronic plethysmography to investigate if structural modifications of the rib cage in OI have consequences on ventilatory pattern. One-way or two-way analysis of variance was performed to compare the results between the three groups and the two postures. compared to predicted values, on condition that updated reference equations are considered. In both positions, ventilation was lower in OI patients than control because of lower tidal volume (p<0.01). In contrast to OI type IV patients, whose chest wall geometry and function was normal, OI type III patients were characterized by reduced (p<0.01) angle at the sternum (pectus carinatum), paradoxical inspiratory inward motion of the pulmonary rib cage, significant thoraco-abdominal asynchronies and rib cage distortions in supine position (p<0.001).In conclusion, the restrictive respiratory pattern of Osteogenesis Imperfecta is closely related to the severity of the disease and to the sternal deformities. Pectus carinatum characterizes OI type III patients and alters respiratory muscles coordination, leading to chest wall and rib cage distortions and an inefficient ventilator pattern. OI type IV is characterized by lower alterations in the respiratory function. These findings suggest that functional assessment and treatment of OI should be differentiated in these two forms of the disease

    Non-Invasive Respiratory Assessment in Duchenne Muscular Dystrophy: From Clinical Research to Outcome Measures

    No full text
    Ventilatory failure, due to the progressive wasting of respiratory muscles, is the main cause of death in patients with Duchenne muscular dystrophy (DMD). Reliable measures of lung function and respiratory muscle action are important to monitor disease progression, to identify early signs of ventilatory insufficiency and to plan individual respiratory management. Moreover, the current development of novel gene-modifying and pharmacological therapies highlighted the urgent need of respiratory outcomes to quantify the effects of these therapies. Pulmonary function tests represent the standard of care for lung function evaluation in DMD, but provide a global evaluation of respiratory involvement, which results from the interaction between different respiratory muscles. Currently, research studies have focused on finding novel outcome measures able to describe the behavior of individual respiratory muscles. This review overviews the measures currently identified in clinical research to follow the progressive respiratory decline in patients with DMD, from a global assessment to an individual structure–function muscle characterization. We aim to discuss their strengths and limitations, in relation to their current development and suitability as outcome measures for use in a clinical setting and as in upcoming drug trials in DMD

    Effects of a multidisciplinary body weight reduction program on static and dynamic thoraco-abdominal volumes in obese adolescents

    Get PDF
    The objective of this study was to characterize static and dynamic thoraco-abdominal volumes in obese adolescents and to test the effects of a 3-week multidisciplinary body weight reduction program (MBWRP), entailing an energy-restricted diet, psychological and nutritional counseling, aerobic physical activity, and respiratory muscle endurance training (RMET), on these parameters. Total chest wall (VCW), pulmonary rib cage (VRC,p), abdominal rib cage (VRC,a), and abdominal (VAB) volumes were measured on 11 male adolescents (Tanner stage: 3-5; BMI standard deviation score: >2; age: 15.9 ± 1.3 years; percent body fat: 38.4%) during rest, inspiratory capacity (IC) maneuver, and incremental exercise on a cycle ergometer at baseline and after 3 weeks of MBWRP. At baseline, the progressive increase in tidal volume was achieved by an increase in end-inspiratory VCW (p < 0.05) due to increases in VRC,p and VRC,a with constant VAB. End-expiratory VCW decreased with late increasing VRC,p, dynamically hyperinflating VRC,a (p < 0.05), and progressively decreasing VAB (p < 0.05). After MBWRP, weight loss was concentrated in the abdomen and total IC decreased. During exercise, abdominal rib cage hyperinflation was delayed and associated with 15% increased performance and reduced dyspnea at high workloads (p < 0.05) without ventilatory and metabolic changes. We conclude that otherwise healthy obese adolescents adopt a thoracoabdominal operational pattern characterized by abdominal rib cage hyperinflation as a form of lung recruitment during incremental cycle exercise. Additionally, a short period of MBWRP including RMET is associated with improved exercise performance, lung and chest wall volume recruitment, unloading of respiratory muscles, and reduced dyspnea

    Ventilatory pattern of osteogenesis imperfecta (OI) patients' and controls in seated and supine positions.

    No full text
    <p>Data are expressed as mean±standard deviation.</p>°, °°, °°°<p>: p<0.05, p<0.01, p<0.001 (vs control).</p>•••<p>: p<0.001 (vs seated).</p

    Thoraco-abdominal asynchronies.

    No full text
    <p>Average values ± SE of phase angle Φ<sub>TA</sub> between pulmonary rib cage and abdomen (top panels), phase angle Φ<sub>RC</sub> between pulmonary rib cage and abdominal rib cage (middle panels) and labored breathing index (bottom panels) in OI type III patients (black bars), OI type IV (grey bars) and control group (white bars) in supine (left panels) and seated (right panels) position. °, °°, °°°: p<0.05, p<0.01, p<0.001 (vs control); *, **, ***: p<0.05, p<0.01, p<0.001 (vs OI type IV); ••,•••: p<0.01, p<0.001 (vs seated).</p

    Osteogenesis imperfecta (OI) patients' pulmonary function test.

    No full text
    <p>Data are expressed as mean±standard deviation. FVC: forced vital capacity;</p>1<p>Reference values from Quanjer et al, 1993;</p>2<p>Reference values from Kuster et al, 2008; FEV<sub>1</sub>: forced expiratory volume in 1 s; TLC: total lung capacity; RV: residual volume; FRC N<sub>2</sub>: functional residual capacity measured by N<sub>2</sub> washout; SpO<sub>2</sub>: arterial oxygen saturation measured by pulse oxymetry; %pred: percentage of predicted value.</p>°,°°<p>p<0.05, p<0.01 vs Quanjer et al.</p

    Thoraco-abdominal contribution to tidal volume.

    No full text
    <p>Average values ± SE of pulmonary rib cage (top panels), abdominal rib cage (middle panels) and abdominal (bottom panels) percentage contribution to tidal volume in OI type III patients (black bars), OI type IV (grey bars) and control group (white bars) in supine (left panels) and seated (right panels) position. °°, °°° : p<0.01, p<0.001 (vs control); *, **, ***: p<0.05, p<0.01, p<0.001 (vs OI type IV); •,••,•••: p<0.01, p<0.001 (vs seated).</p

    Thoraco-abdominal volume variations during spontaneous breathing.

    No full text
    <p>Time courses of the volumes of the rib cage (sum of the pulmonary and abdominal rib cage), abdomen and total chest wall during ten seconds of consecutive breaths at rest in supine position in a representative OI type III patient (left panes) and a representative healthy control subject (right panels). The thick lines highlight a single breath.</p
    corecore