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ARTICLE

Effects of a multidisciplinary body weight reduction program
on static and dynamic thoraco-abdominal volumes in obese
adolescents
Antonella LoMauro, Ambra Cesareo, Fiorenza Agosti, Gabriella Tringali, Desy Salvadego, Bruno Grassi,
Alessandro Sartorio, and Andrea Aliverti

Abstract: The objective of this study was to characterize static and dynamic thoraco-abdominal volumes in obese adolescents and to
test the effects of a 3-week multidisciplinary body weight reduction program (MBWRP), entailing an energy-restricted diet, psycho-
logical and nutritional counseling, aerobic physical activity, and respiratory muscle endurance training (RMET), on these parameters.
Total chest wall (VCW), pulmonary rib cage (VRC,p), abdominal rib cage (VRC,a), and abdominal (VAB) volumes were measured on 11 male
adolescents (Tanner stage: 3–5; BMI standard deviation score: >2; age: 15.9 ± 1.3 years; percent body fat: 38.4%) during rest, inspiratory
capacity (IC) maneuver, and incremental exercise on a cycle ergometer at baseline and after 3 weeks of MBWRP. At baseline, the
progressive increase in tidal volume was achieved by an increase in end-inspiratory VCW (p < 0.05) due to increases in VRC,p and VRC,a

with constant VAB. End-expiratory VCW decreased with late increasing VRC,p, dynamically hyperinflating VRC,a (p < 0.05), and progres-
sively decreasing VAB (p < 0.05). After MBWRP, weight loss was concentrated in the abdomen and total IC decreased. During exercise,
abdominal rib cage hyperinflation was delayed and associated with 15% increased performance and reduced dyspnea at high work-
loads (p < 0.05) without ventilatory and metabolic changes. We conclude that otherwise healthy obese adolescents adopt a thoraco-
abdominal operational pattern characterized by abdominal rib cage hyperinflation as a form of lung recruitment during incremental
cycle exercise. Additionally, a short period of MBWRP including RMET is associated with improved exercise performance, lung and
chest wall volume recruitment, unloading of respiratory muscles, and reduced dyspnea.

Key words: obesity, pediatrics, exercise, pulmonary physiology, exercise physiology, kinesiology.

Résumé : Cette étude a pour objectif de déterminer les volumes thoraco-abdominaux statiques et dynamiques chez des adolescents
obèses et d’évaluer sur ces variables les effets de 3 semaines d’un programme multidisciplinaire de perte de poids (MBWRP) compre-
nant un régime restrictif, du counseling psychologique et nutritionnel, de l’activité physique aérobie et un entraînement en endur-
ance des muscles respiratoires (RMET). On mesure les volumes de la cage thoracique totale (VCW), du compartiment pulmonaire (VRC,p),
du compartiment abdominal (VRC,a) et de l’abdomen (VAB) de 11 adolescents mâles (stade de Tanner : 3–5, IMC > 2 écarts-types, âge 15,9 ±
1,3 ans, pourcentage de gras corporel : 38,4 %) au repos, la capacité inspiratoire (IC), une manœuvre de capacité inspiratoire (IC) et un
test d’effort progressif sur cycloergomètre au début et après 3 semaines de MBWRP. Au début, le volume courant s’accroit progres-
sivement par l’augmentation de VCW à la fin de l’inspiration (p < 0,05) due à l’agrandissement des deux compartiments de la cage
thoracique, VAB demeurant constant. VCW à la fin de l’expiration diminue en présence d’une augmentation tardive de VRC,p avec
hyperinflation dynamique de VRC,a (p < 0,05) et une diminution graduelle de VAB (p < 0,05). Après le MBWRP, la perte de poids se
concentre à l’abdomen et l’IC totale diminue. Au cours de l’exercice physique, l’hyperinflation de la cage thoraco-abdominale est
retardée et associée à une augmentation de la performance de 15 % et à une diminution de la dyspnée à de fortes charges de travail
(p < 0,05) sans variations ventilatoires et métaboliques. Des adolescents obèses en bonne santé par ailleurs adoptent une modalité de
fonctionnement thoraco-abdominale caractérisée par l’occurrence d’une hyperinflation de la cage thoracique pour ainsi solliciter les
poumons au cours de l’épreuve d’effort progressif sur cycloergomètre. De plus, un MBWRP de courte durée incluant un RMET est
associé à une amélioration de la performance à l’effort, à une sollicitation volumique des poumons et de la cage thoracique, à une
décharge des muscles respiratoires et à un allègement de la dyspnée. [Traduit par la Rédaction]

Mots-clés : obésité, pédiatrie, exercice physique, physiologie pulmonaire, physiologie de l’exercice, kinésiologie.

Introduction
Adolescent obesity, a major health concern that has reached a

worldwide epidemic dimension (Brennan et al. 2015), is frequently
associated with early cardiovascular risk, diabetes, sleep-disordered

breathing, and impaired ventilatory function (Must et al. 1992, 1996;
Must and McKeown 2000; Sinha et al. 2002; Schiel et al. 2006). The
last includes breathing at lower lung volumes, decreased thoracic
compliance, and increased respiratory resistance secondary to the

Received 26 May 2015. Accepted 8 February 2016.

A. LoMauro, A. Cesareo, and A. Aliverti. Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.
F. Agosti and G. Tringali. Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, IRCCS, Milan and Piancavallo
(VB), Italy.
D. Salvadego and B. Grassi. Department of Medical and Biological Sciences, University of Udine, Udine, Italy.
A. Sartorio. Experimental Laboratory for Auxo-endocrinological Research, Istituto Auxologico Italiano, IRCCS, Milan and Piancavallo (VB), Italy;
Division of Metabolic Diseases and Auxology, Istituto Auxologico Italiano, IRCCS, Piancavallo (VB), Italy.
Corresponding author: Andrea Aliverti (email: andrea.aliverti@polimi.it).
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

649

Appl. Physiol. Nutr. Metab. 41: 649–658 (2016) dx.doi.org/10.1139/apnm-2015-0269 Published at www.nrcresearchpress.com/apnm on 18 February 2016.

A
pp

l. 
Ph

ys
io

l. 
N

ut
r.

 M
et

ab
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
C

SP
 C

us
to

m
er

 S
er

vi
ce

 o
n 

07
/0

5/
16

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 

mailto:andrea.aliverti@polimi.it
http://www.nrcresearchpress.com/page/authors/services/reprints
http://dx.doi.org/10.1139/apnm-2015-0269


reduction in lung volumes related to overweight (Babb 1999; DeLorey
et al. 2005; Parameswaran et al. 2006; Babb et al. 2011; Chlif et al.
2015). These features suggest that in addition to an augmented elastic
load due to the mass burdening on the chest wall, obese subjects also
have to overcome a higher resistive load (Oppenheimer et al. 2014).
Respiratory muscles therefore have to cope with increased work of
breathing, particularly during exercise (Lin and Lin 2012). The latter
is typically associated with an increased ventilatory response for a
given metabolic requirement (Lin and Lin 2012) as well as an in-
creased oxygen cost of breathing (Bernhardt et al. 2013; Babb et al.
2008), which can reach values up to 3 times greater (�3.0–3.5 mL of
O2/L of minute ventilation) than those reached by normal-weight
subjects.

The assessment of operating volumes of the lung, namely end-
expiratory and end-inspiratory volumes, is important for under-
standing how the respiratory muscles and the ventilatory pattern
adapt in response to incremental exercise-induced demands (Babb
1999, 2013; Babb et al. 2002, 2011; DeLorey et al. 2005; Parameswaran
et al. 2006; Ofir et al. 2007; Romagnoli et al. 2008; Lin and Lin 2012;
Chlif et al. 2015). Obese adolescents do not hyperinflate, i.e., they do
not increase their end-expiratory lung volume, in response to in-
creasing exercise (Mendelson et al. 2012). This finding is in contrast
with studies demonstrating that young obese men hyperinflate dur-
ing heavy levels of exercise, whereas their end-expiratory lung vol-
ume does not change during moderate exercise (DeLorey et al. 2005).
Both obese adolescents and adults improve their operating lung vol-
ume, by increasing their end-expiratory lung volume, after a period
of exercise training and diet (DeLorey et al. 2005; Babb et al. 2011;
Mendelson et al. 2012).

The respiratory response to exercise involves volume changes
of not only the lung but also the chest wall. The distribution of the
latter into the different thoraco-abdominal compartments is deter-
mined by the action of different respiratory muscle groups (Aliverti
et al. 1997, 2002) and can be noninvasively assessed by optoelectronic
plethysmography (Cala et al. 1996). Distinct altered patterns of chest
wall operating volumes during exercise have been described in
chronic obstructive pulmonary disease, pulmonary fibrosis, and cys-
tic fibrosis (Aliverti et al. 2004, 2009; Vogiatzis et al. 2005a;
Georgiadou et al. 2007; Wilkens et al. 2010). Although the dynamical
assessment of total and compartmental operational chest wall vol-
umes during exercise is important for understanding which factors
contribute to exercise limitation, to date there is a lack of investiga-
tions regarding obesity.

The major aim of the present study is to verify whether thoraco-
abdominal volumes of male obese adolescents during exercise are
characterized by specific features eventually adopted to cope with
the increasing ventilatory demands. The main hypothesis was that
the abdominal volume (mass) would affect the action of the
diaphragm and abdominal muscles and consequently the regulation
of the operating volumes of the 2 compartments influenced by these
muscles, namely the abdominal rib cage and abdomen (Ward et al.
1992; Kenyon et al. 1997; Aliverti et al. 2002, 2003). In addition, it has
been recently shown that the inclusion of respiratory muscle endur-
ance training (RMET) in a multidisciplinary body weight reduction
program (MBWRP) improves exercise performance in overweight
and obese adults more than exercise and nutritional counseling
alone (Frank et al. 2011). Therefore, we also investigated whether a
short period of MBWRP including RMET can acutely modify the ge-
ometry and operating volumes of the chest wall in these adolescents.

Materials and methods

Subjects and protocol
Eleven otherwise healthy male obese adolescents (Tanner stage:

3–5; BMI standard deviation score >2 according to the published
Italian standards (Cacciari et al. 2006); mean BMI: 36 ± 5 kg/m2;
mean age: 15.9 ± 1.3 years) were enrolled in the study.

On the second day of hospitalization, after spirometry and mea-
surements of height and weight, body composition, and chest wall
geometry, the subjects performed incremental exercise until ex-
haustion on a cycle ergometer. Afterward they participated in a
3-week in-hospital MBWRP (see below for a detailed description).
All the tests performed at baseline were repeated at the end of the
MBWRP.

Informed consent statements were signed by participants’ par-
ents. The procedures of the investigation were approved by the eth-
ics committee of the Italian Institute for Auxology, Piancavallo, Italy,
and were performed in agreement with the recommendations set
forth in the Helsinki Declaration.

Anthropometry, body composition, and chest wall
geometry

Standard measures of height, weight, and body mass index (calcu-
lated as body weight/height2) were taken together with the assess-
ment of fat mass, fat-free mass, and thoraco-abdominal perimeters,
areas, and volumes.

Bioelectric impedance analysis was used to assess fat-free mass
(Kyle et al. 2004). Whole-body resistance to an applied current
(50 kHz, 0.8 mA) was measured with a tetrapolar device (Human IM,
Dietosystem, Italy). Fat-free mass was calculated with equations de-
rived with a 2-compartment model (Gray et al. 1989). Fat mass was
calculated as the difference between total body mass and fat-free
mass. Thoraco-abdominal perimeters, areas, and volumes were mea-
sured by optoelectronic plethysmography (OEP) (Smart System BTS,
Milan, Italy) (Aliverti et al. 2002). Eight video cameras, 4 in front of
the subject and 4 behind, tracked the movement of 89 retroreflective
markers placed anteriorly and posteriorly over the trunk or chest
wall, extending from clavicles to pubis, with the subject seated on
the cycle ergometer. The position of each marker was reconstructed
and used to characterize chest wall geometry and calculate thoraco-
abdominal volumes. At the end of resting expiration, the coordinates
of the markers at the xiphoid process and the umbilical level were
used to compute the resultant perimeter and the enclosed cross-
sectional area. The total chest wall volume (VCW) was calculated by
applying Gauss’s theorem to the three-dimensional coordinates of
the markers. The accuracy of the system has been previously tested
by simultaneous measurements with a spirometer in healthy sub-
jects while they were sitting or standing, during quiet breathing,
during slow vital capacity maneuvers (Cala et al. 1996), and during
submaximal and maximal exercise on a cycle ergometer (Kenyon
et al. 1997; Layton et al. 2013). In all these conditions, the discrepancy
between the 2 measurements was always < 4%. OEP has been vali-
dated in other postures (Aliverti et al. 2001) and in paralyzed patients
receiving mechanical ventilation (Aliverti et al. 2000), with discrep-
ancies in tidal volume measurements always < 5%. Intra-rater and
inter-rater reliability of OEP has also been evaluated at rest and dur-
ing submaximal cycle-ergometer exercise (Vieira et al. 2013).

The chest wall was modeled as being composed of 3 compart-
ments: the pulmonary rib cage (VRC,p, volume enclosed by the clavi-
cles and the xiphoid process of the sternum), the abdominal rib cage
(VRC,a, volume enclosed by the xiphoid process of the sternum and
the lower costal margin of the rib cage where the diaphragm is
apposed), and the abdomen (VAB, volume enclosed by the lower cos-
tal margin of the rib cage and the iliac crests) (Kenyon et al. 1997;
Aliverti et al. 2002).

Spirometry
Forced vital capacity (FVC), forced expiratory volume in the first

second (FEV1), Tiffeneau index (FEV1/FVC), and peak expiratory
flow (PEF) were determined (MedGraphics CPX/D, Medical Graph-
ics Corp., Saint Paul, Minn., USA). The test was carried out by the
same technician with the participant in standing position, accord-
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ing to the European Respiratory Society guidelines (Miller et al.
2005a, 2005b).

Exercise
After 3 min of measurements during resting quiet breathing to

familiarize subjects with the equipment, the subjects were asked
to perform 2 inspiratory capacity (IC) maneuvers. After another
minute of resting quiet breathing, an incremental exercise test on
a mechanically braked cycle ergometer (Monark Ergomedic 839E)
was started. Following 2 min of warm-up at 30 W, the work rate
was increased by 20 W/min to the limit of tolerance while pedal-
ing frequency was maintained between 60 and 70 rpm. Oxygen

uptake (V̇O2), carbon dioxide output (V̇CO2), ventilatory equivalents
for oxygen (V̇E/V̇O2), ventilatory equivalents for carbon dioxide
(V̇E/V̇CO2), end-tidal oxygen tension (PETO2), and end-tidal carbon di-
oxide tension (PETCO2) were measured on a breath-by-breath ba-
sis using a metabolic unit (MedGraphics CPX/D, Medical Graphics
Corp., Saint Paul, Minn., USA). Borg’s 0–10 category ratio scale was
used to rate the magnitude of dyspnea and leg discomfort at the end
of each workload (Borg 1982).

Operational chest wall volume measurements
Thoraco-abdominal volumes were measured by OEP during the

IC maneuvers and exercise with the subjects grasping poles posi-

Table 1. Subjects’ characteristics and spirometry results.

Characteristic Baseline Post-MBWRP p value

Anthropometry
Age (years) 15.9±1.3 16.0±1.3 0.341
Stature (m) 1.7±0.05 1.7±0.05 Not tested
Body mass (kg) 107.8±16.4 104.3±15.9 >0.001
Body mass index (kg/m2) 36.4±5.0 35.2±4.8 >0.001

Body composition
Fat-free mass, total body (kg) 66.3±9.6 64.4±9.1 0.002
Fat-free mass (% of body mass) 61.6±2.1 61.8±1.9 0.661
Fat mass, total body (kg) 41.4±7.4 39.9±7.3 0.019
Fat mass (% of body mass) 38.4±2.1 38.2±1.9 0.692

Trunk geometry
Chest wall volume at TLC (L)a 38.7±6.8 37.2±6.3 0.008
Chest wall volume at FRC (L)a 35.5±6.3 34.3±6.1 0.019
Rib cage volume (L) 22.1±3.4 21.8±3.3 0.475
Abdominal volume (L) 13.4±3.2 12.5±3.2 0.031
Rib cage circumference (m) 1.10±00.04 1.09±0.04 0.067
Abdominal circumference (m) 1.15±0.07 1.12±0.07 0.002
Rib cage cross-sectional area (cm2) 861.6±73.0 840.4±79.4 0.062
Abdominal cross-sectional area (cm2) 980.2±108.4 920.0±110.7 >0.001

Spirometry
FVC (L) 4.9±0.8 5.1±0.9 0.025
FVC (% predicted) 95.0±11.7 99.3±13.9 0.019
FEV1 (L) 4.2±0.7 4.3±0.6 0.268
FEV1 (% predicted) 94.5±11.1 96.1±9.4 0.246
FEV1/FVC (%) 86.1±6.9 84.1±6.6 0.119
PEF (L/s) 7.8±1.5 8.3±1.6 0.231

Note: MBWRP, multidisciplinary body weight reduction program; TLC, total lung capacity; FRC,
functional residual capacity; FVC, forced vital capacity; FEV1, forced expiratory volume in the first
second; PEF, peak expiratory flow.

aMeasured during inspiratory capacity maneuver.

Fig. 1. Volumes of the chest wall and its 3 compartments, namely the pulmonary rib cage, abdominal rib cage, and abdomen, at total lung
capacity (TLC, upper symbols) and functional residual capacity (FRC, lower symbols) before (white circles) and after (black circles) 3 weeks of a
multidisciplinary body weight reduction program (MBWRP). The vertical distance between the 2 values at TLC and FRC represents inspiratory
capacity (IC). Data are expressed as mean ± standard deviation. §, §§: p < 0.05, 0.01 vs. baseline
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tioned to keep the arms away from the rib cage in order not to cover
lateral markers. Total and compartmental chest wall volumes at
functional residual capacity (FRC) and total lung capacity (TLC) were
determined on the best maneuver for each subject. Starting from
chest wall volume traces, an averaged breath was obtained from the
last 5 breaths at the end of the period of quiet breathing and at the
end of each exercise workload. From the averaged breath, tidal vol-
ume, breathing frequency, and minute ventilation were determined.
End-expiratory and end-inspiratory volumes of the chest wall and its
compartments were also measured and reported as variations from
the baseline volumes at FRC before subjects started pedaling. End-
inspiratory and end-expiratory pulmonary rib cage volumes are in-
dexes of the action of inspiratory and expiratory rib cage muscles,
respectively. End-inspiratory and end-expiratory abdominal volumes
are indexes of the action of the diaphragm and abdominal muscles,
respectively. End-inspiratory abdominal rib cage volume is an index
of the action of the diaphragm in its area of apposition, while end-
expiratory abdominal rib cage volume reflects the action of the in-
sertional component of the abdominal muscles.

Data were collected during resting quiet breathing (rest); at 33%,
66%, and 100% of peak exercise workload at baseline (WmaxPRE); and
at peak exercise workload after the 3 weeks of MBWRP.

Multidisciplinary body weight reduction program
Subjects underwent a 3-week in-hospital MBWRP (Division of

Auxology, Italian Institute for Auxology, Piancavallo, Italy) entail-
ing the following interventions:

(a) personalized diet, monitored daily by a dietician, formulated
according to the Italian recommended daily allowances (Società
Italiana di Nutrizione Umana), and involving an energy intake
�500 kcal lower than the measured resting energy expenditure;

(b) aerobic physical activity, including two 30-min sessions/day
of cycle ergometer pedaling, treadmill walking, and stationary
rowing, carried out in the afternoon 5 days/week; the intensity of
exercise was set to achieve an average heart rate between 60% and
80% of the individual’s age-predicted maximum heart rate;

(c) RMET (Verges et al. 2008) performed 5 days/week, 1 session/day,
12–18 min/session, �25 respiratory acts/session using a commercially
available device (Spiro 141 Tiger, Idiag, Fehraltorf, Switzerland); the
volume of the bag was chosen to obtain, during rebreathing, pulmo-

nary ventilatory values corresponding to �50%–60% of the maximal
ventilatory capacity previously evaluated by spirometry;

(d) psychological and nutritional counseling.

Statistical analysis
The effect of the 3 weeks of MBWRP on anthropometry, body

composition, chest wall geometry, and spirometry was tested us-

Fig. 2. Relationship between body weight and trunk volume at functional residual capacity (FRC, left panel) and total lung capacity (TLC, right
panel) for each subject at baseline (white circles) and after 3 weeks of MBWRP (black circles). The dashed grey line represents the correlation
between the 2 measurements, and its parameters are also reported.

Fig. 3. Relationship between tidal volume and breathing frequency
at rest and at 33%, 66%, and 100% of peak exercise workload at
baseline (white circles) and after 3 weeks of MBWRP (black circles).
The 5th black point refers to the peak exercise value of the test
performed after MBWRP. Dashed lines represent isopleths of
different levels of minute ventilation from 10 to 140 L/min. Data are
expressed as mean ± standard deviation.
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ing 1-way repeated-measures analysis of variance (RM ANOVA) or
the Friedman RM ANOVA on ranks with the time of intervention
(i.e., baseline and after MBWRP) as independent factor.

A linear mixed model with repeated measures was used to de-
scribe the effect of the 3 weeks of MBWRP on breathing pattern,
pulmonary gas exchange, dyspnea, and leg discomfort. Total and
compartmental chest wall volumes were tested as absolute values
and as variations relative to resting values. Peak exercise values at
baseline were compared with both iso-workload and peak exer-
cise values of the test performed after MBWRP.

ANOVA was carried out using SigmaStat version 11.0 (Systat
Software, San Jose, Calif., USA), whereas linear mixed model anal-
ysis was performed with R (R Foundation for Statistical Comput-
ing, Austria). Data are presented as mean ± standard deviation
with the level of significance set at p < 0.05.

Results

Anthropometry, body composition, and chest wall
geometry

Table 1 reports anthropometric, body composition, chest wall
geometry, and spirometric data at baseline and after MBWRP. After
MBWRP, subjects significantly decreased their body weight, with an
average loss of 3.5 kg, resulting in a BMI reduction of 1%. The body
mass loss resulted from a reduction of both fat mass and fat-free
mass and was due to a significant reduction of volume in the abdo-
men (p = 0.031) rather than the rib cage (p = 0.475). VCW at FRC and
TLC significantly decreased after MBWRP (Table 1 and Fig. 1). This was
due mainly to VAB, which was the only compartment that signifi-
cantly decreased after MBWRP at both FRC and TLC (Fig. 1). Body
weight before and after MBWRP linearly correlated with total trunk
volume measured by OEP at FRC and TLC (p < 0.001 in both cases)
(Fig. 2).

Spirometry and inspiratory capacity
The Tiffeneau index was higher than 80%; this excluded the

presence of obstructive alterations but could indicate the onset of
a restrictive pattern. MBWRP improved FVC (when expressed both
as absolute and percentage of predicted values), while it had no
significant effect on the other spirometric parameters, despite
their increase (Table 1).

Inspiratory capacity, measured by OEP, was reduced by 290 ±
550 mL after MBWRP (Fig. 1). The reduction was due to decreases in

IC of both the pulmonary rib cage (240 ± 320 mL) and the abdomen
(260 ± 480 mL). Conversely, IC of the abdominal rib cage increased
(200 ± 320 mL), though not significantly, after MBWRP.

Exercise performance and ventilation
After 3 weeks of MBWRP, peak work rate significantly increased

(219 ± 28 W) compared with baseline (193 ± 30 W, p = 0.003). At
baseline and after MBWRP, the progressive increase of minute
ventilation was due to similar rates of increase of tidal volume
and breathing frequency. After MBWRP, the level of ventilation at
WmaxPRE was the same as that at baseline but was achieved with a
higher tidal volume (p = 0.046) and lower respiratory rate (p = 0.042).
At maximum workload after MBWRP, minute ventilation was higher
(p = 0.0009) than that at baseline WmaxPRE because of an increased
tidal volume (p = 0.0002) with similar respiratory rate (p = 0.683)
(Fig. 3).

Operational chest wall volume measurements
The progressive increase in tidal volume was achieved by chest

wall volume progressively increasing at end-inspiration and progres-
sively decreasing at end-expiration (Fig. 4). At the 2 highest levels of
exercise, end-expiratory chest wall variations were greater after
MBWRP compared with baseline (Fig. 4).

Operational volumes of the 3 different chest wall compartments
are shown in Fig. 5. At baseline, end-expiratory VRC,p, VRC,a, and VAB

variations compared with rest showed different behaviors. During
exercise, the end-expiratory volume of both rib cage compartments
increased. This occurred immediately after the onset of exercise
for VRC,a and only later for VRC,p. End-expiratory VAB progressively
decreased with exercise progression. After MBWRP, no pulmonary
rib cage hyperinflation occurred, whereas end-expiratory VRC,a

significantly increased later (from 66% WmaxPRE). After MBWRP,
end-expiratory VAB showed a similar behavior compared with base-
line. End-expiratory VAB variation was higher at peak exercise than at
WmaxPRE. No differences were found in end-inspiratory compart-
mental volumes before and after MBWRP.

Pulmonary gas exchange
MBWRP had no effect on metabolic responses, since V̇O2, V̇CO2,

V̇E/V̇O2, V̇E/V̇CO2, PETO2, and PETCO2 were similar at baseline and
after the 3-week in-hospital MBWRP, as shown in Fig. 6.

Fig. 4. End-inspiratory (triangles) and end-expiratory (circles) chest wall volume variations, relative to the volume at baseline functional
residual capacity (FRC), plotted versus the corresponding minute ventilation at rest and at 33%, 66%, and 100% of peak exercise workload at
baseline (left panel, white symbols) and after 3 weeks of MBWRP (right panel, black symbols). The 5th black point refers to the peak exercise
value of the test performed after MBWRP. The dashed lines represent the chest wall volume at FRC and the dashed-dotted lines represent the
chest wall volume at total lung capacity. Data are expressed as mean ± standard deviation. *, **, ***: p < 0.05, 0.01, 0.001 vs. rest; ###: p < 0.001
vs. peak exercise workload at baseline; §§: p < 0.01 vs. baseline.
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Respiratory and leg muscle perceived exertion
The relationships between minute ventilation, oxygen uptake,

or leg power output and the ratings of perceived exertion for
breathing and legs are shown in Fig. 7. After 3 weeks of MBWRP,
both dyspnea and leg discomfort were reduced at higher levels of
exercise. At baseline, exercise terminated with similar levels of
dyspnea and leg discomfort, whereas after MBWRP, leg discomfort
was significantly (p < 0.05) greater than dyspnea at peak exercise.
Dyspnea values at both WmaxPRE and maximum exercise workload
after MBWRP were significantly lower than the value at baseline
WmaxPRE.

Discussion
The main result of the present study is that a short multidis-

ciplinary body weight reduction program including respiratory
muscle endurance training applied to otherwise healthy obese
adolescents contributes to increased exercise performance by
changing static and dynamic chest wall configuration, lower-

ing the abdominal load, unloading the respiratory muscles, and
reducing dyspnea.

Baseline
Breathing at low pulmonary volumes is one of several respiratory

factors that distinguish obesity and contribute to a constrained ven-
tilatory response to exercise even in the presence of otherwise
healthy lungs (Babb 1999, 2013; Parameswaran et al. 2006; Ofir et al.
2007; Lin and Lin 2012; Chlif et al. 2015). For this reason, a beneficial
ventilatory strategy for obese subjects would be to move towards
higher lung volumes. Our data show that the increase of tidal vol-
ume during pedaling is achieved by a progressive increase of end-
inspiratory chest wall volume and a slight decrease of end-expiratory
chest wall volume. This means that the increased ventilatory de-
mand is mostly fulfilled by recruiting inspiratory reserve volume
and, to a lesser extent, expiratory reserve volume without dynamic
hyperinflation. This finding was previously reported by Mendelson
et al. (2012), who measured dynamic changes in end-expiratory lung

Fig. 5. End-inspiratory (triangles) and end-expiratory (circles) volume variations of the pulmonary rib cage (upper panels), abdominal rib cage
(middle panels), and abdomen (bottom panels) plotted against the corresponding minute ventilation at rest and at 33%, 66%, and 100% of peak
exercise workload at baseline (left panels, white symbols) and after 3 weeks of MBWRP (right panels, black symbols). The 5th black point refers to
the peak exercise value of the test performed after MBWRP. For each compartment, volumes are relative to the corresponding compartmental
volume at baseline functional residual capacity (FRC), the dashed lines represent the volume at FRC, and the dashed-dotted lines represent the
volume at total lung capacity. Data are expressed as mean ± standard deviation. *, **, ***: p < 0.05, 0.01, 0.001 vs. rest; #: p < 0.05 vs. peak
exercise workload at baseline.
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volumes through serial IC maneuvers. The assessment of end-
expiratory lung volume variations by serial IC maneuvers is valid
under the assumptions that total lung capacity does not change ap-
preciably during exercise and that subjects perform maximal ma-
neuvers at each step (Yan et al. 1997). Our results were instead
obtained on a breath-by-breath basis without requiring any respira-
tory maneuvers during pedaling. Another original aspect of the pres-
ent study is that, for the first time in obese subjects, the action of the
different respiratory muscle groups on the chest wall and the parti-
tioning of inspiratory and expiratory reserve volumes in the differ-
ent compartments in response to incremental exercise have been
measured. Immediately after the onset of exercise, end-inspiratory
rib cage volume increases and end-expiratory abdominal volume
decreases, indicating that inspiratory rib cage muscles and abdomi-
nal muscles are immediately recruited. This is in agreement with
earlier studies of healthy lean subjects showing that inspiratory re-
serve volume is entirely located in the rib cage, whereas expiratory
reserve volume is in the abdomen (Aliverti et al. 2002; Vogiatzis et al.
2005b; Wilkens et al. 2010). However, in contrast to findings in
healthy lean subjects, in our obese adolescents the rib cage hyperin-
flates. The main contribution to hyperinflation is from the abdomi-
nal rib cage. This is probably a consequence of an early contraction of
the diaphragm and a subsequent increase of its appositional force
(Ward et al. 1992). It can be hypothesized that the contraction of the

abdominal muscles during expiration optimizes the pre-inspiratory
fiber length of the diaphragm, which can contract earlier to prevent
excessive lengthening, overcome the load imposed by the abdominal
contents, and further contribute to increasing the pressure that ex-
pands the abdominal rib cage. It is possible that at higher abdominal
rib cage volumes, the lung is recruited and the respiratory system
returns to a more normal position on its pressure–volume curve,
characterized by higher compliance, as already suggested by other
authors (DeLorey et al. 2005; Ofir et al. 2007; Babb et al. 2008;
Mendelson et al. 2012; Babb 2013).

MBWRP effect
After 3 weeks of MBWRP, our adolescents were still obese, hav-

ing lost only 3.5 kg and 1% of BMI. BMI does not take into account
age, sex, or muscle mass; therefore, it may be high in individuals
with a low body fat percentage and high muscle mass, such as
heavily muscled athletes. However, the fact that the body fat per-
centage was higher than 25, both before and after MBWRP, con-
firms the diagnosis of mild obesity according to the ideal body fat
percentage chart, taking into account the sex and the age of the
subjects (McCarthy et al. 2006). Our OEP measurements indicate
that trunk or chest wall volume highly correlates to total body
weight (Fig. 2) and that the weight loss was concentrated predom-
inantly in the abdomen (Table 1). Although the total body weight

Fig. 6. Ventilatory response is shown in the upper panels with minute ventilation plotted against the corresponding oxygen uptake (V̇O2, left)
and carbon dioxide output (V̇CO2, right). Ventilatory equivalents for oxygen (V̇E/V̇O2, middle left panel), ventilatory equivalents for carbon
dioxide (V̇E/V̇CO2, middle right panel), end-tidal oxygen tension (PETO2, bottom left panel), and end-tidal carbon dioxide tension (PETCO2,
bottom right panel) are plotted against the corresponding minute ventilation. Data are reported at rest and at 33%, 66%, and 100% of peak
exercise workload at baseline (white circles) and after 3 weeks of MBWRP (black circles). The 5th black point refers to the peak exercise value
of the test performed after MBWRP. Data are expressed as mean ± standard deviation.
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reduction was small, it can still have important consequences on
the respiratory system. In fact, lower abdominal volume, suggesting
a reduction in abdominal mass, determines a reduced mechanical
load, shortened diaphragmatic sarcomeres, a decreased area of ap-
position of the diaphragm, and reduced muscle fiber length of the
abdominal muscles (Sieck et al. 2013). In addition, our results show
that IC is significantly reduced after MBWRP. The reduction of IC
indicates that the volume of the lungs at functional residual capacity
increases and therefore the diaphragm lowers to a more physiologic
position. The new configuration of the diaphragmatic-abdominal
compartment at rest modifies the starting point of the system before
exercise, as confirmed by the reduction of IC, which is significantly
reduced in the pulmonary rib cage and abdomen but tends to in-
crease in the abdominal rib cage. During incremental exercise, dy-
namic variations of total and compartmental operating volumes are
similar to those at baseline but are shifted to different volume levels
for similar ventilation and workload (Figs. 4 and 5). After MBWRP,
pulmonary rib cage hyperinflation disappeared, while abdominal rib
cage hyperinflation occurred later (i.e., at higher workload).

The new static and dynamic chest wall configurations presumably
have an effect not only on exercise performance but also on per-
ceived effort. At the end of exercise, dyspnea and leg discomfort
reached similar levels at baseline, whereas leg discomfort was higher
than dyspnea after MBWRP. Moreover, MBWRP seems to delay the
onset of intolerable symptoms, since both dyspnea and leg discom-
fort were lower at similar ventilatory demands and oxygen uptake
during incremental cycle exercise after MBWRP. Compared with

baseline, after MBWRP: (i) V̇O2 and V̇CO2 variations, being the prox-
imate causes of increased ventilatory requirements, do not change;
(ii) the slope of the V̇E/V̇CO2 curve does not change; and (iii) the dys-
pnea/V̇E and dyspnea/V̇O2 slopes shift downward. Our interpretation
is that although there are no MBWRP-induced changes in the venti-
latory and metabolic demands of incremental cycle exercise in obese
adolescent males, the respiratory muscles are mechanically un-
loaded. This interpretation is supported by previous studies show-
ing how breathlessness increases at any given ventilation when
an external mechanical load is added to the respiratory muscles
(O’Donnell et al. 2000; Mendonca et al. 2014). During intense exercise
after MBWRP, compared with baseline, leg discomfort is lower at
equal levels of leg power output and V̇O2. The delay in the onset of
intolerable symptoms, therefore, seems more likely to reflect the
static and dynamic ameliorative thoraco-abdominal operational vol-
umes combined with mechanical unloading of the respiratory mus-
cles. The former, in turn, results from increased synergy between the
diaphragm and the abdominal muscles owing to the 3.5 kg of body
mass reduction localized mainly in the abdomen; the latter might be
a consequence of specific RMET.

In their cohort of obese adolescents, Mendelson et al. (2012) ob-
tained similar improvements in terms of reduction of exertional
dyspnea and better operating lung volume without changes in V̇O2
and V̇CO2 with exercise training alone over a longer period of
12 weeks. Frank and coworkers (2011) found that a nutrition and
training program with RMET reduced the perception of breathless-
ness during exercise in overweight and obese adults more than diet

Fig. 7. Relationships between rate of perceived exertion (RPE) for breathing and ventilation (top left panel), rating of leg discomfort and
workload (top right panel), RPE for breathing and oxygen uptake (bottom left panel), and rating of leg discomfort and oxygen uptake (bottom
right panel) at rest and at 33%, 66%, and 100% of peak exercise workload at baseline (white circles) and after 3 weeks of MBWRP (black circles).
The 5th black point refers to the peak exercise value of the test performed after MBWRP. Data are expressed as mean ± standard deviation.
*, **, ***: p < 0.05, 0.01, 0.001 vs. rest; #: p < 0.05 vs. peak exercise workload at baseline; §§, §§§: p < 0.01, 0.001 vs. baseline.
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and exercise alone. Reduced breathlessness was then associated
with improved running performance and increased daily physical
activity (Frank et al. 2011). Although the present data on the changes
induced by MBWRP do not allow us to distinguish the individual
contributions of the 3 components of the MBWRP, based on the
results of Frank et al., we can speculate that RMET itself may have
played an important role in generating improvements of the venti-
lator pump in a shorter time compared with the study of Mendelson
et al. The increased FVC, the reduced dyspnea without changes in
V̇O2 and V̇CO2, the higher end-inspiratory chest wall and pulmonary
rib cage volumes at peak exercise, and tidal volume that tended to
increase at peak exercise are all signs of ameliorative performance of
the ventilatory pump in terms of efficiency, efficacy, and endurance.
However, additional studies of obese adolescents are needed to de-
termine the effects of 3 weeks of energy-restricted diet plus aerobic
training alone in comparison with the results obtained in the pres-
ent study. In a previous study (Salvadego et al. 2015) carried out in a
similar population, it was observed that acute respiratory muscle
unloading by normoxic helium–O2 breathing determined a reduced
oxygen cost of cycling and lower dyspnea and limb discomfort dur-
ing moderate-to-heavy-intensity exercise at a constant work rate.
These findings suggest that in the obese population, interventions
specifically aimed at reducing the mechanical load and (or) increas-
ing respiratory muscle endurance and strength could be recom-
mended to improve exercise tolerance.

A limitation of the present study is the lack of measurements of
absolute lung volumes at rest, maximal inspiratory and expiratory
pressures at the mouth, and trans-diaphragmatic pressure during
exercise. The first set of measurements would have shown improve-
ments in the restrictive lung pattern. The second set would have
provided information on the effect of MBWRP on the strength and
endurance of the different respiratory muscles. The third set would
have allowed detection of early activation of the diaphragm. The
relatively small sample size can be considered another limitation of
the study, but we deliberately decided to study a specific population:
male adolescents. In fact, differences in the regulation of end-
expiratory lung volume during exercise have been found among
obese subjects of different ages and sexes: (i) no hyperinflation in
obese adolescents (Mendelson et al. 2012); (ii) hyperinflation only
during heavy levels of exercise in young obese men (DeLorey et al.
2005); (iii) hyperinflation from the beginning of exercise in the ma-
jority of obese adults (Romagnoli et al. 2008; Babb et al. 2011); (iv) no
hyperinflation in obese adults characterized by higher expiratory
reserve volume, similar to healthy controls (Romagnoli et al. 2008);
(v) no hyperinflation in young obese women (Babb et al. 2002); and
(vi) hyperinflation in older obese women (Ofir et al. 2007). It would
therefore be interesting to extend the characterization of dynamic
chest wall volume adaptation to incremental exercise to other obese
populations, older individuals, and (or) females to verify whether
thoraco-abdominal volume variations mirror the different lung pat-
terns. Another limitation of our study is the lack of an age-matched,
non-obese control group, even if the regulation of total and compart-
mental end-inspiratory and end-expiratory chest wall volumes in
healthy, young, and lean subjects has already been described
(Vogiatzis et al. 2005b).

In conclusion, abdominal rib cage hyperinflation occurs during
moderate-to-peak-intensity incremental exercise in male obese ado-
lescents to recruit lung volume. This can be considered a dynamic
adaptation of the ventilatory pump to cope with the obesity-related
chest wall loading through optimization of the synergy between the
diaphragm and the abdominal muscles. As a result, the system
moves to higher operating volumes to achieve greater thoracic com-
pliance. Three weeks of a multidisciplinary body weight reduction
program are enough to reduce the abdominal load, recruit lung and
chest wall volumes, improve exercise performance, reduce dyspnea,
and delay dynamic abdominal rib cage hyperinflation without ven-
tilatory and metabolic demands. These factors may contribute to

improved exercise tolerance in otherwise healthy obese adolescents,
therefore breaking the vicious cycle of inactivity and weight gain.
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