259 research outputs found
Assessing the value of human papillomavirus vaccination in Gavi-eligible low-income and middle-income countries.
INTRODUCTION: Estimating the value of providing effective healthcare interventions in a country requires an assessment of whether the improvement in health outcomes they offer exceeds the improvement in health that would have been possible if the resources required had, instead, been made available for other healthcare activities in that country. This potential alternative use of the same resources represents the health opportunity cost of providing the intervention. Without such assessments, there is a danger that blanket recommendations made by international organisations will lead to the adoption of healthcare interventions that are not cost effective in some countries, even given existing donor mechanisms intended to support their affordability. METHODS: We assessed the net health impact to 46 Gavi-eligible countries of achieving one of the WHO's proposed 90-70-90 targets for cervical cancer elimination, which includes 90% coverage of human papillomavirus (HPV) vaccination among girls by 15 years of age, using published estimates of the expected additional benefits and costs in each country and estimates of the marginal productivity of each healthcare system. We calculated the maximum price each country could afford to pay for HPV vaccination to be cost effective by assessing the net health impact that would be expected to be generated at different potential prices. RESULTS: At Gavi negotiated prices, HPV vaccination offers net health benefits across most Gavi-eligible countries included in this study. However, if Gavi-eligible countries faced the average price faced by non-Gavi eligible countries, providing HPV vaccination would result in reduced overall population health in most countries. CONCLUSION: Estimates of the net health impact of providing a healthcare intervention can be used to assess the benefit (or lack of) to countries of adhering to global guidance, inform negotiations with donors, as well as pricing negotiations and the value of developing new healthcare interventions
The intracellular accumulation of polymeric neuroserpin explains the severity of the dementia FENIB
Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is an autosomal dominant dementia that is characterized by the retention of polymers of neuroserpin as inclusions within the endoplasmic reticulum (ER) of neurons. We have developed monoclonal antibodies that detect polymerized neuroserpin and have used COS-7 cells, stably transfected PC12 cell lines and transgenic Drosophila melanogaster to characterize the cellular handling of all four mutant forms of neuroserpin that cause FENIB. We show a direct correlation between the severity of the disease-causing mutation and the accumulation of neuroserpin polymers in cell and fly models of the disease. Moreover, mutant neuroserpin causes locomotor deficits in the fly allowing us to demonstrate a direct link between polymer accumulation and neuronal toxicity
α1-Antitrypsin deficiency.
α1-Antitrypsin deficiency (A1ATD) is an inherited disorder caused by mutations in SERPINA1, leading to liver and lung disease. It is not a rare disorder but frequently goes underdiagnosed or misdiagnosed as asthma, chronic obstructive pulmonary disease (COPD) or cryptogenic liver disease. The most frequent disease-associated mutations include the S allele and the Z allele of SERPINA1, which lead to the accumulation of misfolded α1-antitrypsin in hepatocytes, endoplasmic reticulum stress, low circulating levels of α1-antitrypsin and liver disease. Currently, there is no cure for severe liver disease and the only management option is liver transplantation when liver failure is life-threatening. A1ATD-associated lung disease predominately occurs in adults and is caused principally by inadequate protease inhibition. Treatment of A1ATD-associated lung disease includes standard therapies that are also used for the treatment of COPD, in addition to the use of augmentation therapy (that is, infusions of human plasma-derived, purified α1-antitrypsin). New therapies that target the misfolded α1-antitrypsin or attempt to correct the underlying genetic mutation are currently under development
Case report and literature review: transient Inab phenotype and an agglutinating anti-IFC in a patient with a gastrointestinal problem
The Inab phenotype is a rare deficiency of all Cromer antigens. These antigens are carried on the decay-accelerating factor (DAF, CD55) molecule that is attached to the red blood cell (RBC) membrane by a glycosylphosphatidylinositol (GPI) anchor. Although typically inherited, an acquired and transient form of the Inab phenotype also exists. A patient with the triad of transient Inab phenotype, a direct-agglutinating anti-IFC, and gastrointestinal (GI) abnormalities is reported. CASE REPORT: An 18-month-old boy with gastroesophageal reflux disease requiring a feeding tube, milk and soy intolerance, and severe growth retardation, as well as vision and hearing deficits from cytomegalovirus infection, was identified when pretransfusion testing revealed a potent panagglutinin (titer > 2000 at 4°C). This antibody did not react with Dr(a–) and IFC RBCs, and the autocontrol was negative. The patient’s RBCs lacked CD55 by flow cytometric techniques but had normal levels of CD59 and antigens such as Yt a and Emm, carried on GPI-linked proteins, thus excluding paroxysmal nocturnal hemoglobinuria. Several months after initial detection, the anti-IFC was virtually undetectable and his cells reacted weakly with anti-IFC, anti-Dr a , and anti-CD55. RBCs from the propositus’ parents and brother demonstrated normal CD55 and CD59 expression. CONCLUSION: This is the first example of a direct-agglutinating anti-IFC. The cause of the transient depression in CD55 protein (and thus Cromer system antigens) and appearance of anti-IFC remains unknown, as does the relationship between the patient’s GI system abnormalities and these serologic findings.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71992/1/j.1537-2995.2006.00933.x.pd
Heme metabolism genes Downregulated in COPD Cachexia.
IntroductionCachexia contributes to increased mortality and reduced quality of life in Chronic Obstructive Pulmonary Disease (COPD) and may be associated with underlying gene expression changes. Our goal was to identify differential gene expression signatures associated with COPD cachexia in current and former smokers.MethodsWe analyzed whole-blood gene expression data from participants with COPD in a discovery cohort (COPDGene, N = 400) and assessed replication (ECLIPSE, N = 114). To approximate the consensus definition using available criteria, cachexia was defined as weight-loss > 5% in the past 12 months or low body mass index (BMI) (< 20 kg/m2) and 1/3 criteria: decreased muscle strength (six-minute walk distance < 350 m), anemia (hemoglobin < 12 g/dl), and low fat-free mass index (FFMI) (< 15 kg/m2 among women and < 17 kg/m2 among men) in COPDGene. In ECLIPSE, cachexia was defined as weight-loss > 5% in the past 12 months or low BMI and 3/5 criteria: decreased muscle strength, anorexia, abnormal biochemistry (anemia or high c-reactive protein (> 5 mg/l)), fatigue, and low FFMI. Differential gene expression was assessed between cachectic and non-cachectic subjects, adjusting for age, sex, white blood cell counts, and technical covariates. Gene set enrichment analysis was performed using MSigDB.ResultsThe prevalence of COPD cachexia was 13.7% in COPDGene and 7.9% in ECLIPSE. Fourteen genes were differentially downregulated in cachectic versus non-cachectic COPD patients in COPDGene (FDR < 0.05) and ECLIPSE (FDR < 0.05).DiscussionSeveral replicated genes regulating heme metabolism were downregulated among participants with COPD cachexia. Impaired heme biosynthesis may contribute to cachexia development through free-iron buildup and oxidative tissue damage
- …