600 research outputs found

    Thermal simulations for optical transition radiation screen for Eli-NP compton gamma source

    Get PDF
    The ELI-NP GBS (Extreme Light Infrastructure-Nuclear Physics Gamma Beam Source) is a high brightness elec-tron LINAC that is being built in Romania. The goal for this facility is to provide high luminosity gamma beam through Compton Backscattering. A train of 32 bunches at 100Hz with a nominal charge of 250pC is accelerated up to 740 MeV. Two interaction points with an IR Laser beam produces the gamma beam at different energies. In order to measure the electron beam spot size and the beam proper-ties along the train, the OTR screens must sustain the ther-mal and mechanical stress due to the energy deposited by the bunches. This paper is an ANSYS study of the issues due to the high quantity of energy transferred to the OTR screen. They will be shown different analysis, steady-state and thermal transient analysis, where the input loads will be the internal heat generation equivalent to the average power, deposited by the ELI-GBS beam in 512 ns, that is the train duration. Each analyses will be followed by the structural analysis to investigate the performance of the OTR materi

    Thermal issues for the optical transition radiation screen for the ELI-NP compton gamma source

    Get PDF
    A high brightness electron LINAC is being built in the Compton Gamma Source at the ELI Nuclear Physics facility in Romania. To achieve the design luminosity, a train of 32 bunches, 16 ns spaced, with a nominal charge of 250 pC will collide with a laser beam in two interaction points. Electron beam spot size is measured with Optical Transition Radiation (OTR) profile monitors. In order to measure the beam properties, the OTR screens must sustain the thermal and mechanical stress due to the energy deposited by bunches. This paper is an ANSYS study of the issues due to the high energy transferred to the OTR screens. Thermal multicycle analysis will be shown; each analysis will be followed by a structural analysis in order to investigate the performance of the materia

    Hemolymphangiomatosis of the spleen: imaging features.

    Get PDF

    Hyaluronic acid-based nanocomplexes as novel drug-nanocarriers to treat myotonic dystrophy

    Get PDF
    Hyaluronic acid-based nanocomplexes have been developpend as novel drug-nanocarriers to treat myotonic dystroph

    Conceptual design of electron beam diagnostics for high brightness plasma accelerator

    Get PDF
    A design study of the diagnostics of a high brightness linac, based on X-band structures, and a plasma accelerator stage, has been delivered in the framework of the EuPRAXIA@SPARC_LAB project. In this paper, we present a conceptual design of the proposed diagnostics, using state of the art systems and new and under development devices. Single shot measurements are preferable for plasma accelerated beams, including emittance, while μ\mum level and fs scale beam size and bunch length respectively are requested. The needed to separate the driver pulse (both laser or beam) from the witness accelerated bunch imposes additional constrains for the diagnostics. We plan to use betatron radiation for the emittance measurement just at the end of the plasma booster, while other single-shot methods must be proven before to be implemented. Longitudinal measurements, being in any case not trivial for the fs level bunch length, seem to have already a wider range of possibilities

    LES validation of lock-exchange density currents interacting with an emergent bluff obstacle

    Get PDF
    Publisher Copyright: © 2022, The Author(s), under exclusive licence to Springer Nature B.V.We address the capability of large eddy simulation (LES) to predict the physics of density currents interacting with bluff obstacles. Most density currents of interest in engineering and geophysical applications interact with obstacles or topographic features. Validating LES solutions in these contexts is crucial to establish it as a trusted tool. We thus propose a validation effort based on simple geometries that nonetheless pose challenges common to more complex systems, including boundary layer separation and convective instabilities. We focus on lock-exchange gravity currents in the slumping phase interacting with an emergent vertical circular cylinder. Our main investment was in ensuring that the comparison of experimental data and numerical results include, at least, the velocity and the density fields , and derived quantities (e.g., second order moments). Measurements of both density and velocity fields were performed in the side and plan views for cylinder Reynolds numbers, Red, in the range 1300 to 3475. It was found that the LES accurately predicts the temporal evolution of the current front position. The computed front velocity exhibits a maximum relative error less than 8%. A good agreement between the LES and the experimental size and shape of the current head, and billows was found. The overall features upstream the cylinder, including a reflected wave, adverse pressure gradient and backflow, and downstream the cylinder, including the backflow, wake and the formation of a new head are well reproduced by LES. The agreement between the LES and the experimental time-space evolution of current spanwise- and depth-averaged density contours and the instantaneous velocity fields are not affected by Red.publishersversionpublishe
    corecore