907 research outputs found

    High intrinsic energy resolution photon number resolving detectors

    Full text link
    Transition Edge Sensors (TESs) are characterized by the intrinsic figure of merit to resolve both the energy and the statistical distribution of the incident photons. These properties lead TES devices to become the best single photon detector for quantum technology experiments. For a TES based on titanium and gold has been reached, at telecommunication wavelength, an unprecedented intrinsic energy resolution (0.113 eV). The uncertainties analysis of both energy resolution and photon state assignment has been discussed. The thermal properties of the superconductive device have been studied by fitting the bias curve to evaluate theoretical limit of the energy resolution

    Indoor Environmental Quality (IEQ): A Comparison between TOPSIS- and PROMETHEE-Based Approaches for Indirect Eliciting of Category Weights

    Get PDF
    Indoor Environmental Quality (IEQ) has received a great deal of attention in recent years due to the relationship between worker comfort and productivity. Many academics have studied IEQ from both a building design and an IEQ assessment perspective. This latter line of research has mostly used direct eliciting to obtain weights assigned to IEQ categories such as thermal comfort, visual comfort, acoustic comfort, and indoor air quality. We found only one application of indirect eliciting in the literature. Such indirect eliciting operates without the need for imprecise direct weighing and requires only comfort evaluations, which is in line with the Industry 5.0 paradigm of individual, dynamic, and integrated IEQ evaluation. In this paper, we use a case study to compare the only indirect eliciting model already applied to IEQ, based on TOPSIS, to an indirect eliciting method based on PROMETHEE and to a classical direct eliciting method (AHP). The results demonstrate the superiority of indirect eliciting in reconstructing individual preferences related to perceived global comfort

    Factors related to delayed treatment: A case report of a huge cutaneous horn and review of the literature

    Get PDF
    We present a case of a man with a giant cutaneous horn over his frontal region. This case has been presented for the size of the lesion, due to delayed treatment, and to illustrate the reasons why the growth of this lesion has been possible in a western country, in the 21st century. It was a solitary, not painful lesion which caused significant aesthetic problems. The diagnosis was based on an ultrasonographic study and the treatment of choice was a surgical excision. This case is an opportunity to review the literature about the cutaneous horns, to talk about the main causes of delayed diagnosis and treatment of cutaneous lesions and, to define the role of the specialist in the assessment of emotions and patient support

    Self consistent, absolute calibration technique for photon number resolving detectors

    Full text link
    Well characterized photon number resolving detectors are a requirement for many applications ranging from quantum information and quantum metrology to the foundations of quantum mechanics. This prompts the necessity for reliable calibration techniques at the single photon level. In this paper we propose an innovative absolute calibration technique for photon number resolving detectors, using a pulsed heralded photon source based on parametric down conversion. The technique, being absolute, does not require reference standards and is independent upon the performances of the heralding detector. The method provides the results of quantum efficiency for the heralded detector as a function of detected photon numbers. Furthermore, we prove its validity by performing the calibration of a Transition Edge Sensor based detector, a real photon number resolving detector that has recently demonstrated its effectiveness in various quantum information protocols.Comment: 9 pages, 2 figure

    Towards joint reconstruction of noise and losses in quantum channels

    Get PDF
    The calibration of a quantum channel, i.e. the determination of the transmission losses affecting it, is definitely one of the principal objectives in both the quantum communication and quantum metrology frameworks. Another task of the utmost relevance is the identification, e.g. by extracting its photon number distribution, of the noise potentially present in the channel. Here we present a protocol, based on the response of a photon-number-resolving detector at different quantum efficiencies, able to accomplish both of these tasks at once, providing with a single measurement an estimate of the transmission losses as well as the photon statistics of the noise present in the exploited quantum channel. We show and discuss the experimental results obtained in the practical implementation of such protocol, with different kinds and levels of noise.Comment: 6 pages, 4 figure

    Inter-firm exchanges, distributed renewable energy generation, and battery energy storage system integration via microgrids for energy symbiosis

    Get PDF
    Policymakers and entrepreneurs are aware that reducing energy waste and underutilization are mandatory to actually foster the green transition. Nevertheless, small-medium enterprises usually meet technical and over-whelming financial constraints. They are unable to make profits, become less energy-sensitive, and cut down on their emissions simultaneously. Industrial districts are a source of both wealth and GHG (greenhouse gas) emissions. Eco-industrial parks (EIPs) supply a suitable strategy to ease symbiotic exchanges among various organizations. Surplus electricity from larger, energy-autonomous companies will be a new input for more vulnerable ones. This type of district is challenging, and it can provide an unexplored opportunity to cooperate, invest in renewable energy sources, and form alliances. To better exploit underutilized energy in industrial districts, it is essential to explore energy symbiosis (ES), i.e., an energy-based perspective of industrial symbiosis. This study presents an original mixed-integer linear programming (MILP) optimization model that aims to identify possible inter-firm exchanges and introduce microgrid-based support for distributed renewable-energy generators (DREGs) and battery energy storage systems (BESS) over a one-year simulation period. The model simultaneously targets economic and ecological objectives. The paper compares two case studies, one with battery support and one without. The optimization model was tested using a case study and found to improve energy efficiency (with a 43.46% saving in energy costs) and reduce greenhouse gas emissions (with an 84.59% reduction in GHG) by facilitating symbiotic exchanges among SMEs in industrial districts. The inclusion of BESS support further enhanced the model's ability to utilize green and recovered energy. These findings have im-plications for policymakers, entrepreneurs, and SMEs seeking to transition to more sustainable energy practices. Future work could explore the applicability of the MILP optimization model in other contexts and the potential for scaling up the model to larger industrial districts

    Exposure to Air Pollution in Transport Microenvironments

    Get PDF
    People spend approximately 90% of their day in confined spaces (at home, work, school or in transit). During these periods, exposure to high concentrations of atmospheric pollutants can pose serious health risks, particularly to the respiratory system. The objective of this paper is to define a framework of the existing literature on the assessment of air quality in various transport microenvironments. A total of 297 papers, published from 2002 to 2021, were analyzed with respect to the type of transport microenvironments, the pollutants monitored, the concentrations measured and the sampling methods adopted. The analysis emphasizes the increasing interest in this topic, particularly regarding the evaluation of exposure in moving cars and buses. It specifically focuses on the exposure of occupants to atmospheric particulate matter (PM) and total volatile organic compounds (TVOCs). Concentrations of these pollutants can reach several hundreds of µg/m3 in some cases, significantly exceeding the recommended levels. The findings presented in this paper serve as a valuable resource for urban planners and decision-makers in formulating effective urban policies
    • …
    corecore