61 research outputs found

    Management of Bell’s Palsy with Phototherapy

    Get PDF
    Bell’s palsy (BP) is a common condition; its incidence rate has increased during the COVID-19 pandemic. The standard treatment for facial nerve palsy includes corticosteroids alone or in combination with antiviral agents. However, the treatment is contraindicated in some patients, including hypertensive or diabetic patients. Also, the medication combination may result in inadequate recovery when complementary and alternative approaches are indicated. This chapter reviewed the literature on managing BP with different types of photobiomodulation (PBM) therapies. Fourteen papers were included. The results show that despite the different kinds of photo energy used, varying laser parameters, and the heterogeneity of patients, the outcome of PBM was similar among studies. Of interest is that acute and subacute BP respond more favorably to PBM than chronic cases. Hence, it is suggested to apply PMB as a complementary treatment in the early stage of the disease to enhance the recovery rate of BP patients. However, the risk of bias in these studies was relatively high. Therefore, further randomized, double-blind placebo-controlled studies are needed to determine the effectiveness of PBM in treating BP

    Acute renal impairment in coronavirus-associated severe acute respiratory syndrome

    Get PDF
    Acute renal impairment in coronavirus-associated severe acute respiratory syndrome.BackgroundSevere acute respiratory syndrome (SARS) is a newly emerged infection from a novel coronavirus (SARS-CoV). Apart from fever and respiratory complications, acute renal impairment has been observed in some patients with SARS. Herein, we describe the clinical, pathologic, and laboratory features of the acute renal impairment complicating this new viral infection.MethodsWe conducted a retrospective analysis of the plasma creatinine concentration and other clinical parameters of the 536 SARS patients with normal plasma creatinine at first clinical presentation, admitted to two regional hospitals following a major outbreak in Hong Kong in March 2003. Kidney tissues from seven other patients with postmortem examinations were studied by light microscopy and electron microscopy.ResultsAmong these 536 patients with SARS, 36 (6.7%) developed acute renal impairment occurring at a median duration of 20 days (range 5–48 days) after the onset of viral infection despite a normal plasma creatinine level at first clinical presentation. The acute renal impairment reflected the different prerenal and renal factors that exerted renal insult occurring in the context of multiorgan failure. Eventually, 33 SARS patients (91.7%) with acute renal impairment died. The mortality rate was significantly higher among patients with SARS and acute renal impairment compared with those with SARS and no renal impairment (91.7% vs. 8.8%) (P < 0.0001). Renal tissues revealed predominantly acute tubular necrosis with no evidence of glomerular pathology. The adjusted relative risk of mortality associated with the development of acute renal impairment was 4.057 (P < 0.001). By multivariate analysis, acute respiratory distress syndrome and age were the most significant independent risk factors predicting the development of acute renal impairment in SARS.ConclusionAcute renal impairment is uncommon in SARS but carries a high mortality. The acute renal impairment is likely to be related to multi-organ failure rather than the kidney tropism of the virus. The development of acute renal impairment is an important negative prognostic indicator for survival with SARS

    MicroRNA profiling study reveals MIR-150 in association with metastasis in nasopharyngeal carcinoma

    Get PDF
    © 2017 The Author(s). MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in pathogenesis of human cancers. Several miRNAs have been shown to involve in nasopharyngeal carcinoma (NPC) pathogenesis through alteration of gene networks. A global view of the miRNA expression profile of clinical specimens would be the best way to screen out the possible miRNA candidates that may be involved in disease pathogenesis. In this study, we investigated the expression profiles of miRNA in formalin-fixed paraffin-embedded tissues from patients with undifferentiated NPC versus non-NPC controls using a miRNA real-time PCR platform, which covered a total of 95 cancer-related miRNAs. Hierarchical cluster analysis revealed that NPC and non-NPC controls were clearly segregated. Promisingly, 10 miRNA candidates were differentially expressed. Among them, 9 miRNAs were significantly up-regulated of which miR-205 and miR-196a showed the most up-regulated in NPC with the highest incidence percentage of 94.1% and 88.2%, respectively, while the unique down-regulated miR-150 was further validated in patient sera. Finally, the in vitro gain-of-function and loss-of-function assays revealed that miR-150 can modulate the epithelial-mesenchymal-transition property in NPC/HK-1 cells and led to the cell motility and invasion. miR-150 may be a potential biomarker for NPC and plays a critical role in NPC tumourigenesis.Link_to_subscribed_fulltex

    Reactivation of Epstein–Barr virus by a dual-responsive fluorescent EBNA1-targeting agent with Zn2+-chelating function

    Get PDF
    EBNA1 is the only Epstein–Barr virus (EBV) latent protein responsible for viral genome maintenance and is expressed in all EBV-infected cells. Zn2+ is essential for oligomerization of the functional EBNA1. We constructed an EBNA1 binding peptide with a Zn2+ chelator to create an EBNA1-specific inhibitor (ZRL5P4). ZRL5P4 by itself is sufficient to reactivate EBV from its latent infection. ZRL5P4 is able to emit unique responsive fluorescent signals once it binds with EBNA1 and a Zn2+ ion. ZRL5P4 can selectively disrupt the EBNA1 oligomerization and cause nasopharyngeal carcinoma (NPC) tumor shrinkage, possibly due to EBV lytic induction. Dicer1 seems essential for this lytic reactivation. As can been seen, EBNA1 is likely to maintain NPC cell survival by suppressing viral reactivation

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF
    corecore