8 research outputs found

    NAIROBI 1899-1939: HISTOIRE DE LA CREATION DUNE VILLE COLONIALE ET ETUDE DE LA VIE ECONOMIQUE ET SOCIALE DE LA POPULATION BLANCHE

    Get PDF
    A l'origine de ce sujet, une etude de la yule de Nairobi de 1899 1939 est une question de l'époque coloniale, si breve dans le temps puisqu'elle n'a rneme pas dure un siecle, que reste-t'il comme signe visible dans l'espace, sinon les villes ? ParticuliCrement en Afrique Noire oü dans bien des regions les villes n'existaient pas et ont ete fondées par le colonisateur. Crdées ex nihilo ", situées en fonction de la corivenance stratégique, dconomique et politique du colonisateur, dies ont un role double. D'une part, elles prouvent aux autres pays Européens, par leur existence rneme, que la colonie est prospère et que la civilisation occidentale a pénétré le territoire. D'autre part, elles servent a affirmer au peuple colonisé la force du pouvoir colonial qui les gouverne. C'est pourquoi, tout en ayant pour modele et référence la yule métropo-litaine, la yule coloniale n'est pas une yule europenne coimne les autres. Son architecture, tout en stadaptant è un clirnat different de celui de l'Europe, doit gtre significative, elle doit avant tout impressionner

    Transfer learning from synthetic to routine clinical data for motion artefact detection in brain T1-weighted MRI

    Get PDF
    International audienceClinical data warehouses (CDWs) contain the medical data of millions of patients and represent a great opportunity to develop computational tools. MRIs are particularly sensitive to patient movements during image acquisition, which will result in artefacts (blurring, ghosting and ringing) in the reconstructed image. As a result, a significant number of MRIs in CDWs are unusable because corrupted by these artefacts. Since their manual detection is impossible due to the number of scans, it is necessary to develop a tool to automatically exclude images with motion in order to fully exploit CDWs. In this paper, we propose a CNN for the automatic detection of motion in 3D T1-weighted brain MRI. Our transfer learning approach, based on synthetic motion generation, consists of two steps: a pre-training on research data using synthetic motion, followed by a fine-tuning step to generalise our pre-trained model to clinical data, relying on the manual labelling of 5500 images. The objectives were both (1) to be able to exclude images with severe motion, (2) to detect mild motion artefacts. Our approach achieved excellent accuracy for the first objective with a balanced accuracy nearly similar to that of the annotators (balanced accuracy>80%). However, for the second objective, the performance was weaker and substantially lower than that of human raters. Overall, our framework will be useful to take advantage of CDWs in medical imaging and to highlight the importance of a clinical validation of models trained on research data

    Fourier Disentangled Multimodal Prior Knowledge Fusion for Red Nucleus Segmentation in Brain MRI

    Full text link
    Early and accurate diagnosis of parkinsonian syndromes is critical to provide appropriate care to patients and for inclusion in therapeutic trials. The red nucleus is a structure of the midbrain that plays an important role in these disorders. It can be visualized using iron-sensitive magnetic resonance imaging (MRI) sequences. Different iron-sensitive contrasts can be produced with MRI. Combining such multimodal data has the potential to improve segmentation of the red nucleus. Current multimodal segmentation algorithms are computationally consuming, cannot deal with missing modalities and need annotations for all modalities. In this paper, we propose a new model that integrates prior knowledge from different contrasts for red nucleus segmentation. The method consists of three main stages. First, it disentangles the image into high-level information representing the brain structure, and low-frequency information representing the contrast. The high-frequency information is then fed into a network to learn anatomical features, while the list of multimodal low-frequency information is processed by another module. Finally, feature fusion is performed to complete the segmentation task. The proposed method was used with several iron-sensitive contrasts (iMag, QSM, R2*, SWI). Experiments demonstrate that our proposed model substantially outperforms a baseline UNet model when the training set size is very small

    Automatic motion artefact detection in brain T1-weighted magnetic resonance images from a clinical data warehouse using synthetic data

    No full text
    International audienceContaining the medical data of millions of patients, clinical data warehouses (CDWs) represent a great opportunity to develop computational tools. Magnetic resonance images (MRIs) are particularly sensitive to patient movements during image acquisition, which will result in artefacts (blurring, ghosting and ringing) in the reconstructed image. As a result, a significant number of MRIs in CDWs are corrupted by these artefacts and may be unusable. Since their manual detection is impossible due to the large number of scans, it is necessary to develop tools to automatically exclude (or at least identify) images with motion in order to fully exploit CDWs. In this paper, we propose a novel transfer learning method for the automatic detection of motion in 3D T1-weighted brain MRI. The method consists of two steps: a pre-training on research data using synthetic motion, followed by a fine-tuning step to generalise our pre-trained model to clinical data, relying on the labelling of 4045 images. The objectives were both (1) to be able to exclude images with severe motion, (2) to detect mild motion artefacts. Our approach achieved excellent accuracy for the first objective with a balanced accuracy nearly similar to that of the annotators (balanced accuracy>80 %). However, for the second objective, the performance was weaker and substantially lower than that of human raters. Overall, our framework will be useful to take advantage of CDWs in medical imaging and highlight the importance of a clinical validation of models trained on research data

    Semi-supervised Domain Adaptation for Automatic Quality Control of FLAIR MRIs in a Clinical Data Warehouse

    No full text
    International audienceDomain adaptation is a very useful approach to exploit the potential of clinical data warehouses, which gather a vast amount of medical imaging encompassing various modalities, sequences, manufacturers and machines. In this study, we propose a semi-supervised domain adaptation (SSDA) framework for automatically detecting poor quality FLAIR MRIs within a clinical data warehouse. Leveraging a limited number of labelled FLAIR and a large number of labelled T1-weighted MRIs, we introduce a novel architecture based on the well known Domain Adversarial Neural Network (DANN) that incorporates a specific classifier for the target domain. Our method effectively addresses the covariate shift and class distribution shift between T1-weighted and FLAIR MRIs, surpassing existing SSDA approaches by more than 10 percent points

    Transfer learning from synthetic to routine clinical data for motion artefact detection in brain T1-weighted MRI

    Get PDF
    International audienceClinical data warehouses (CDWs) contain the medical data of millions of patients and represent a great opportunity to develop computational tools. MRIs are particularly sensitive to patient movements during image acquisition, which will result in artefacts (blurring, ghosting and ringing) in the reconstructed image. As a result, a significant number of MRIs in CDWs are unusable because corrupted by these artefacts. Since their manual detection is impossible due to the number of scans, it is necessary to develop a tool to automatically exclude images with motion in order to fully exploit CDWs. In this paper, we propose a CNN for the automatic detection of motion in 3D T1-weighted brain MRI. Our transfer learning approach, based on synthetic motion generation, consists of two steps: a pre-training on research data using synthetic motion, followed by a fine-tuning step to generalise our pre-trained model to clinical data, relying on the manual labelling of 5500 images. The objectives were both (1) to be able to exclude images with severe motion, (2) to detect mild motion artefacts. Our approach achieved excellent accuracy for the first objective with a balanced accuracy nearly similar to that of the annotators (balanced accuracy>80%). However, for the second objective, the performance was weaker and substantially lower than that of human raters. Overall, our framework will be useful to take advantage of CDWs in medical imaging and to highlight the importance of a clinical validation of models trained on research data

    Automated MRI Quality Assessment of Brain T1-weighted MRI in Clinical Data Warehouses: A Transfer Learning Approach Relying on Artefact Simulation

    No full text
    International audienceThe emergence of clinical data warehouses (CDWs), which contain the medical data of millions of patients, has paved the way for vast data sharing for research. The quality of MRIs gathered in CDWs differs greatly from what is observed in research settings and reflects a certain clinical reality. Consequently, a significant proportion of these images turns out to be unusable due to their poor quality. Given the massive volume of MRIs contained in CDWs, the manual rating of image quality is impossible. Thus, it is necessary to develop an automated solution capable of effectively identifying corrupted images in CDWs. This study presents an innovative transfer learning method for automated quality con- trol of 3D gradient echo T1-weighted brain MRIs within a CDW, leveraging artefact sim- ulation. We first intentionally corrupt images from research datasets by inducing poorer contrast, adding noise and introducing motion artefacts. Subsequently, three artefact- specific models are pre-trained using these corrupted images to detect distinct types of artefacts. Finally, the models are generalised to routine clinical data through a transfer learning technique, utilising 3660 manually annotated images. The overall image quality is inferred from the results of the three models, each designed to detect a specific type of artefact. Our method was validated on an independent test set of 385 3D gradient echo T1-weighted MRIs. Our proposed approach achieved excellent results for the detection of bad quality MRIs, with a balanced accuracy of over 87%, surpassing our previous approach by 3.5 percent points. Additionally, we achieved a satisfactory balanced accuracy of 79% for the detection of moderate quality MRIs, outperforming our previous performance by 5 percent points. Our framework provides a valuable tool for exploiting the potential of MRIs in CDWs
    corecore