41 research outputs found

    Cystinosis: practical tools for diagnosis and treatment

    Get PDF
    Cystinosis is the major cause of inherited Fanconi syndrome, and should be suspected in young children with failure to thrive and signs of renal proximal tubular damage. The diagnosis can be missed in infants, because not all signs of renal Fanconi syndrome are present during the first months of life. In older patients cystinosis can mimic idiopathic nephrotic syndrome due to focal and segmental glomerulosclerosis. Measuring elevated white blood cell cystine content is the corner stone for the diagnosis. The diagnosis is confirmed by molecular analysis of the cystinosin gene. Corneal cystine crystals are invariably present in all patients with cystinosis after the age of 1 year. Treatment with the cystine depleting drug cysteamine should be initiated as soon as possible and continued lifelong to prolong renal function survival and protect extra-renal organs. This educational feature provides practical tools for the diagnosis and treatment of cystinosis

    Association Testing Of Copy Number Variants in Schizophrenia and Autism Spectrum Disorders

    Get PDF
    Background: Autism spectrum disorders and schizophrenia have been associated with an overlapping set of copynumber variant loci, but the nature and degree of overlap in copy number variants (deletions compared toduplications) between these two disorders remains unclear.Methods: We systematically evaluated three lines of evidence: (1) the statistical bases for associations of autismspectrum disorders and schizophrenia with a set of the primary CNVs thus far investigated, from previous studies;(2) data from case series studies on the occurrence of these CNVs in autism spectrum disorders, especially amongchildren, and (3) data on the extent to which the CNVs were associated with intellectual disability anddevelopmental, speech, or language delays. We also conducted new analyses of existing data on these CNVs inautism by pooling data from seven case control studies.Results: Four of the CNVs considered, dup 1q21.1, dup 15q11-q13, del 16p11.2, and dup 22q11.21, showed clearstatistical evidence as autism risk factors, whereas eight CNVs, del 1q21.1, del 3q29, del 15q11.2, del 15q13.3, dup16p11.2, dup 16p13.1, del 17p12, and del 22q11.21, were strongly statistically supported as risk factors forschizophrenia. Three of the CNVs, dup 1q21.1, dup 16p11.2, and dup 16p13.1, exhibited statistical support as riskfactors for both autism and schizophrenia, although for each of these CNVs statistical significance was nominal fortests involving one of the two disorders. For the CNVs that were statistically associated with schizophrenia but werenot statistically associated with autism, a notable number of children with the CNVs have been diagnosed withautism or ASD; children with these CNVs also demonstrate a high incidence of intellectual disability anddevelopmental, speech, or language delays.Conclusions: These findings suggest that although CNV loci notably overlap between autism and schizophrenia,the degree of strongly statistically supported overlap in specific CNVs at these loci remains limited. These analysesalso suggest that relatively severe premorbidity to CNV-associated schizophrenia in children may sometimes bediagnosed as autism spectrum disorder

    Genetics and complement in atypical HUS

    Get PDF
    Central to the pathogenesis of atypical hemolytic uremic syndrome (aHUS) is over-activation of the alternative pathway of complement. Following the initial discovery of mutations in the complement regulatory protein, factor H, mutations have been described in factor I, membrane cofactor protein and thrombomodulin, which also result in decreased complement regulation. Autoantibodies to factor H have also been reported to impair complement regulation in aHUS. More recently, gain of function mutations in the complement components C3 and Factor B have been seen. This review focuses on the genetic causes of aHUS, their functional consequences, and clinical effect

    Mutational analysis of CLC-5, cofilin and CLC-4 in patients with Dent's disease.

    No full text
    BACKGROUND/AIMS: Dent's disease is caused by mutations in the chloride/proton antiporter, CLC-5, or oculo-cerebro-renal-syndrome-of-Lowe (OCRL1) genes. METHODS: Eighteen probands with Dent's disease were investigated for mutations in CLC-5 and two of its interacting proteins, CLC-4 and cofilin. Wild-type and mutant CLC-5s were assessed in kidney cells. Urinary calcium excretion following an oral calcium challenge was studied in one family. RESULTS: Seven different CLC-5 mutations consisting of two nonsense mutations (Arg347Stop and Arg718Stop), two missense mutations (Ser244Leu and Arg516Trp), one intron 3 donor splice site mutation, one deletion-insertion (nt930delTCinsA) and an in-frame deletion (523delVal) were identified in 8 patients. In the remaining 10 patients, DNA sequence abnormalities were not detected in the coding regions of CLC-4 or cofilin, and were independently excluded for OCRL1. Patients with CLC-5 mutations were phenotypically similar to those without. The donor splice site CLC-5 mutation resulted in exon 3 skipping. Electrophysiology demonstrated that the 523delVal CLC-5 mutation abolished CLC-5-mediated chloride conductance. Sixty percent of women with the CLC-5 deletion-insertion had nephrolithiasis, although calcium excretion before and after oral calcium challenge was similar to that in unaffected females. CONCLUSIONS: Three novel CLC-5 mutations were identified, and mutations in OCRL1, CLC-4 and cofilin excluded in causing Dent's disease in this patient cohort
    corecore