47 research outputs found

    Polycyclic aromatic hydrocarbons in permafrost peatlands

    Get PDF
    The concentrations of 15 individual PAHs in 93 peat cores have been determined by using high-performance liquid chromatography methods. In the profile the qualitative and quantitative composition of PAHs was non-uniform estimated in a wide range: from 112 to 3673 ng/g with mean 1214 ± 794 ng/g. Among 15 identified individual PAHs, the main contribution to their total amount was made by heavy highly condensed PAHs in the Eastern European peat plateaus, in particular, 6-nuclear benzo[ghi]perylene (1021 ± 707 ng/g), whereas in West Siberian permafrost peatlands, light PAHs were dominating, mostly naphthalene and phenanthrene (211 ± 87 and 64 ± 25 ng/g, respectively). The grass-equisetum peat contained the maximum of heavy PAHs and the dwarf shrub-grass—the minimum. In grass-dwarf shrub, grass-moss and moss peat, the share of 2-nuclear PAHs was most significant: naphthalene and fluorene, as well as 6-nuclear benzo[ghi]perylene. The presence of benzo[ghi]perylene in the entire peat strata, including its permafrost layer, was a marker of the anaerobic conditions that persisted throughout the Holocene and they were necessary for the synthesis of this compound

    Experimental assessment of tundra fire impact on element export and storage in permafrost peatlands

    Get PDF
    Extensive studies have been performed on wildfire impact on terrestrial and aquatic ecosystems in the taiga biome, however consequences of wildfires in the tundra biome remain poorly understood. In such a biome, permafrost peatlands occupy a sizable territory in the Northern Hemisphere and present an extensive and highly vulnerable storage of organic carbon. Here we used an experimental approach to model the impact of ash produced from burning of main tundra organic constituents (i.e., moss, lichen and peat) on surrounding aquatic ecosystems. We studied the chemical composition of aqueous leachates produced during short-term (1 week) interaction of ash with distilled water and organic-rich lake water at 5 gsolid L−1 and 20 °C. The addition of ash enriched the fluid phase in major cations (i.e., Na, Ca, Mg), macro- (i.e., P, K, Si) and micronutrients (i.e., Mn, Fe, Co, Ni, Zn, Mo). This enrichment occurred over <2 days of experiment. Among 3 studied substrates, moss ash released the largest amount of macro- and microcomponents into the aqueous solution. To place the obtained results in the environmental context of a peatbog watershed, we assume a fire return interval of 56 years and that the entire 0–10 cm of upper peat is subjected to fire impact. These mass balance calculations demonstrated that maximal possible delivery of elements from ash after soil burning to the hydrological network is negligibly small (<1–2 %) compared to the annual riverine export flux and element storage in thermokarst lakes. As such, even a 5–10 fold increase in tundra wildfire frequency may not sizably modify nutrient and metal fluxes and pools in the surrounding aquatic ecosystems. This result requires revisiting the current paradigm on the importance of wildfire impact on permafrost peatlands and calls a need for experimental work on other ecosystem compartments (litter, shrubs, frozen peat) which are subjected to fire events

    Elemental and molecular composition of humic acids isolated from soils of tallgrass temperate rainforests (Chernevaya taiga) by 1H-13C HECTCOR NMR spectroscopy

    Get PDF
    The soils of Chernevaya taiga (tallgrass fir-aspen hemiboreal rainforest) have high fertility in comparison with oligotrophic analogs formed in boreal taiga. We have studied humic acids isolated from the soils of Chernevaya and oligotrophic taiga in the Novosibirsk, Tomsk, Kemerovo and the Altai regions of Russia and for the first time the structural and molecular composition of humic acids was determined using13C CP/MAS and1H-13C HETCOR NMR spectroscopy. According to data obtained in this study, up to 48% of aromatic compounds accumulate in the soils of Chernevaya taiga, which is higher than in the oligotrophic taiga and comparable with this rate of steppe Chernozems. In the course of active processes of transformation of organic matter, a significant number of aromatic fragments accumulates in the middle horizons of soil profiles. Using13C CP/MAS spectroscopy, it was possible to identify the main structural fragments (aliphatic and aromatic) that formed in humic acids of the Chernevaya taiga. The HETCOR experiment made it possible to accurately determine the boundaries of chemical shifts of the main groups of structural fragments of humic acids. Our results demonstrate that the stabilization of organic compounds occurs in the soil of the Chernevaya taiga, which leads to the resistance of organic matter to biodegradation that is not typical for benchmark soils of boreal environments

    Morphogenetic diagnostics of soil formation on tailing dumps of coal quarries in Siberia

    Get PDF
    Morphological diagnostics of soil-forming processes in the young soils of technogenic landscapes are considered. Comprehensive multilevel studies of soils developed on the tailings of coal mines of different age in a wide range of climatic conditions in Siberia are performed. The processes of the mineral substrate transformation predominate at the initial stages of soil formation. Then, with the development of the soil profiles, the processes of the organic matter transformation begin to play the major role, and the organoprofiles of the soils specific to the particular climatic zone are formed. Micro- and submicroscopic studies allow us to judge the character of major soil processes and to identify the features attesting to the activity of some associated processes

    Seasonal dynamics of organic carbon and metals in thermokarst lakes from the discontinuous permafrost zone of western Siberia

    Get PDF
    Despite relatively good knowledge of the biogeochemistry of Siberian thermokarst lakes during summer base flow, their seasonal dynamics remains almost unexplored. This work describes the chemical composition of 130 thermokarst lakes ranging in size from a few m2 to several km2, located in the discontinuous permafrost zone. Lakes were sampled during spring flood, just after the ice break (early June), the end of summer (August), the beginning of ice formation (October) and during the full freezing season in winter (February). The lakes larger than 1000m2 did not exhibit any statistically significant control of the lake size on dissolved organic carbon (DOC), the major and trace element concentrations over three major open water seasons. On the annual scale, the majority of dissolved elements including organic carbon increased their concentration from 30 to 500 %, with a statistically significant (p summer>autumn>winter. The ice formation in October included several stages: first, surface layer freezing followed by crack (fissure) formation with unfrozen water from the deeper layers spreading over the ice surface. This water was subsequently frozen and formed layered ice rich in organic matter. As a result, the DOC and metal (Mn, Fe, Ni, Cu, Zn, As, Ba and Pb) concentrations were highest near the surface of the ice column (0 to 20 cm) and decreased by a factor of 2 towards the bottom. The main implications of discovered freeze-driven solute concentrations in thermokarst lake waters are enhanced colloidal coagulation and removal of dissolved organic matter and associated insoluble metals from the water column to the sediments. The measured distribution coefficients of a TE between amorphous organo-ferric coagulates and lake water (<0.45 μm) were similar to those reported earlier for Fe-rich colloids and low molecular weight (<1 kDa, or <1–2 nm) fractions of thermokarst lake waters, suggesting massive coprecipitation of TE with amorphous Fe oxyhydroxide stabilized by organic matter. Although the concentration of most elements was lowest in spring, this period of maximal water coverage of land created a significant reservoir of DOC and soluble metals in the water column that can be easily mobilized to the hydrological network. The highest DOC concentration observed in the smallest (<100m2) water bodies in spring suggests their strongly heterotrophic status and, therefore, a potentially elevated CO2 flux from the lake surface to the atmosphere

    Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers

    Get PDF
    Analysis of organic and inorganic carbon (DOC and DIC, respectively), pH, Na, K, Ca, Mg, Cl, SO<sub>4</sub> and Si in ~ 100 large and small rivers (< 10 to &le; 150 000 km<sup>2</sup>) of western Siberia sampled in winter, spring, and summer over a more than 1500 km latitudinal gradient allowed establishing main environmental factors controlling the transport of river dissolved components in this environmentally important region, comprising continuous, discontinuous, sporadic and permafrost-free zones. There was a significant latitudinal trend consisting in a general decrease in DOC, DIC, SO<sub>4</sub>, and major cation (Ca, Mg, Na, K) concentration northward, reflecting the interplay between groundwater feeding (detectable mostly in the permafrost-free zone, south of 60° N) and surface flux (in the permafrost-bearing zone). The northward decrease in concentration of inorganic components was strongly pronounced both in winter and spring, whereas for DOC, the trend of concentration decrease with latitude was absent in winter, and less pronounced in spring flood than in summer baseflow. The most significant decrease in K concentration from the southern (< 59° N) to the northern (61–67° N) watersheds occurs in spring, during intense plant litter leaching. The latitudinal trends persisted for all river watershed size, from < 100 to > 10 000 km<sup>2</sup>. Environmental factors are ranked by their increasing effect on DOC, DIC, δ<sup>13</sup>C<sub>DIC</sub>, and major elements in western Siberian rivers as follows: watershed area < season < latitude. Because the degree of the groundwater feeding is different between large and small rivers, we hypothesize that, in addition to groundwater feeding of the river, there was a significant role of surface and shallow subsurface flow linked to plant litter degradation and peat leaching. We suggest that plant-litter- and topsoil-derived DOC adsorbs on clay mineral horizons in the southern, permafrost-free and discontinuous/sporadic permafrost zone but lacks the interaction with minerals in the continuous permafrost zone. It can be anticipated that, under climate warming in western Siberia, the maximal change will occur in small (< 1000 km<sup>2</sup> watershed) rivers DOC, DIC and ionic composition and this change will be mostly pronounced in summer

    Numerical Assessment of Morphological and Hydraulic Properties of Moss, Lichen and Peat from a Permafrost Peatland

    Get PDF
    Due to its insulating and draining role, assessing ground vegetation cover properties is important for high-resolution hydrological modeling of permafrost regions. In this study, morphological and effective hydraulic properties of Western Siberian Lowland ground vegetation samples (lichens, Sphagnum mosses, peat) are numerically studied based on tomography scans. Porosity is estimated through a void voxels counting algorithm, showing the existence of representative elementary volumes (REVs) of porosity for most samples. Then, two methods are used to estimate hydraulic conductivity depending on the sample's homogeneity. For homogeneous samples, direct numerical simulations of a single-phase flow are performed, leading to a definition of hydraulic conductivity related to a REV, which is larger than those obtained for porosity. For heterogeneous samples, no adequate REV may be defined. To bypass this issue, a pore network representation is created from computerized scans. Morphological and hydraulic properties are then estimated through this simplified representation. Both methods converged on similar results for porosity. Some discrepancies are observed for a specific surface area. Hydraulic conductivity fluctuates by 2 orders of magnitude, depending on the method used. Porosity values are in line with previous values found in the literature, showing that arctic cryptogamic cover can be considered an open and well-connected porous medium (over 99 % of overall porosity is open porosity). Meanwhile, digitally estimated hydraulic conductivity is higher compared to previously obtained results based on field and laboratory experiments. However, the uncertainty is less than in experimental studies available in the literature. Therefore, biological and sampling artifacts are predominant over numerical biases. This could be related to compressibility effects occurring during field or laboratory measurements. These numerical methods lay a solid foundation for interpreting the homogeneity of any type of sample and processing some quantitative properties' assessment, either with image processing or with a pore network model. The main observed limitation is the input data quality (e.g., the tomographic scans' resolution) and its pre-processing scheme. Thus, some supplementary studies are compulsory for assessing syn-sampling and syn-measurement perturbations in experimentally estimated, effective hydraulic properties of such a biological porous medium.</p

    Dispersed ice of permafrost peatlands represents an important source of labile carboxylic acids, nutrients and metals

    Get PDF
    Thawing of frozen organic and mineral soils and liberation of organic carbon (OC), macro- and micro-nutrients and trace elements from pore ice in high latitude regions represent a potentially important but poorly quantified retroactive linkage to climate warming. This is especially true for permafrost peatlands, occupying a sizable proportion of all permafrost territories and presenting a large and highly vulnerable stock of soil OC which can be subjected to fast thawing at currently circum-zero temperatures. The conventional method of assessing the labile water-soluble fraction of permafrost soils is aqueous extraction from dried soil. However, this technique does not allow collecting native ice present in soil pores and is therefore likely to underestimate or overestimate the pool of labile soil C and nutrients. Here, we present results of direct pore ice analyses performed on native peat cores from the western Siberia Lowland in comparison to the water extraction (10 and 100 gdry peat L-1) of soluble components from the same peat subjected to freeze drying. Aqueous leachates of permafrost peat from both thawed (0–45 cm) and frozen (45–130 cm) layers yielded high concentrations of DOC, nutrients, carboxylic acids and trace metals, comparable or higher to those in peat porewater and dispersed peat ice. We found strong (a factor of 3 to 30) enrichment in the frozen part of the core (below 45 cm, which is active layer depth) in dissolved OC, many carboxylates (acetate, formate, lactate, butyrate, propionate, pyruvate), inorganic nutrients (Si, P, N) and trace elements (Fe, Al, Mn, Zn, Sr and Ba). The dispersed ice which is present in peat below active layer represents highly labile reservoir of organic and inorganic nutrients which should be considered in permafrost thaw scenario

    Bacterial number and genetic diversity in a permafrost peatland (Western Siberia): Testing a link with organic matter quality and elementary composition of a peat soil profile

    Get PDF
    Permafrost peatlands, containing a sizable amount of soil organic carbon (OC), play a pivotal role in soil (peat) OC transformation into soluble and volatile forms and greatly contribute to overall natural CO2 and CH4 emissions to the atmosphere under ongoing permafrost thaw and soil OC degradation. Peat microorganisms are largely responsible for the processing of this OC, yet coupled studies of chemical and bacterial parameters in permafrost peatlands are rather limited and geographically biased. Towards testing the possible impact of peat and peat pore water chemical composition on microbial population and diversity, here we present results of a preliminary study of the western Siberia permafrost peatland discontinuous permafrost zone. The quantitative evaluation of microorganisms and determination of microbial diversity along a 100 cm thick peat soil column, which included thawed and frozen peat and bottom mineral horizon, was performed by RT-PCR and 16S rRNA gene-based metagenomic analysis, respectively. Bacteria (mainly Proteobac-teria, Acidobacteria, Actinobacteria) strongly dominated the microbial diversity (99% sequences), with a negligible proportion of archaea (0.3–0.5%). There was a systematic evolution of main taxa according to depth, with a maximum of 65% (Acidobacteria) encountered in the active layer, or permafrost boundary (50–60 cm). We also measured C, N, nutrients and ~50 major and trace elements in peat (19 samples) as well as its pore water and dispersed ice (10 samples), sampled over the same core, and we analyzed organic matter quality in six organic and one mineral horizon of this core. Using multiparametric statistics (PCA), we tested the links between the total microbial number and 16S rRNA diversity and chemical composition of both the solid and fluid phase harboring the microor-ganisms. Under climate warming and permafrost thaw, one can expect a downward movement of the layer of maximal genetic diversity following the active layer thickening. Given a one to two orders of magnitude higher microbial number in the upper (thawed) layers compared to bottom (frozen) layers, an additional 50 cm of peat thawing in western Siberia may sizably increase the total microbial population and biodiversity of active cells
    corecore