16 research outputs found
An Essential Role for Katanin p80 and Microtubule Severing in Male Gamete Production
Katanin is an evolutionarily conserved microtubule-severing complex implicated in multiple aspects of microtubule dynamics. Katanin consists of a p60 severing enzyme and a p80 regulatory subunit. The p80 subunit is thought to regulate complex targeting and severing activity, but its precise role remains elusive. In lower-order species, the katanin complex has been shown to modulate mitotic and female meiotic spindle dynamics and flagella development. The in vivo function of katanin p80 in mammals is unknown. Here we show that katanin p80 is essential for male fertility. Specifically, through an analysis of a mouse loss-of-function allele (the Taily line), we demonstrate that katanin p80, most likely in association with p60, has an essential role in male meiotic spindle assembly and dissolution and the removal of midbody microtubules and, thus, cytokinesis. Katanin p80 also controls the formation, function, and dissolution of a microtubule structure intimately involved in defining sperm head shaping and sperm tail formation, the manchette, and plays a role in the formation of axoneme microtubules. Perturbed katanin p80 function, as evidenced in the Taily mouse, results in male sterility characterized by decreased sperm production, sperm with abnormal head shape, and a virtual absence of progressive motility. Collectively these data demonstrate that katanin p80 serves an essential and evolutionarily conserved role in several aspects of male germ cell development
The mammalian centrosome and its functional significance
Primarily known for its role as major microtubule organizing center, the centrosome is increasingly being recognized for its functional significance in key cell cycle regulating events. We are now at the beginning of understanding the centrosomeβs functional complexities and its major impact on directing complex interactions and signal transduction cascades important for cell cycle regulation. The centrosome orchestrates entry into mitosis, anaphase onset, cytokinesis, G1/S transition, and monitors DNA damage. Recently, the centrosome has also been recognized as major docking station where regulatory complexes accumulate including kinases and phosphatases as well as numerous other cell cycle regulators that utilize the centrosome as platform to coordinate multiple cell cycle-specific functions. Vesicles that are translocated along microtubules to and away from centrosomes may also carry enzymes or substrates that use centrosomes as main docking station. The centrosomeβs role in various diseases has been recognized and a wealth of data has been accumulated linking dysfunctional centrosomes to cancer, Alstrom syndrome, various neurological disorders, and others. Centrosome abnormalities and dysfunctions have been associated with several types of infertility. The present review highlights the centrosomeβs significant roles in cell cycle events in somatic and reproductive cells and discusses centrosome abnormalities and implications in disease
Multiple conductance channel activity of wild-type and voltage-dependent anion-selective channel (VDAC)-less yeast mitochondria.
Yeast mitoplasts (mitochondria with the outer membrane stripped away) exhibit multiple conductance channel activity (MCC) in patch-clamp experiments that is very similar to the activity previously described in mammalian mitoplasts. The possible involvement of the voltage-dependent anion-selective channel (VDAC) of the outer membrane in MCC activity was explored by comparing the channel activity in wild-type yeast mitoplasts with that of a VDAC-deletion mutant. The channel activity recorded from the mutant is essentially the same as that of the wild-type in the voltage range of -40 to 30 mV. These observations indicate that VDAC is not required for MCC activity. Interestingly, the channel activity of the VDAC-less yeast mitoplasts exhibits altered gating properties at transmembrane potentials above and below this range. We conclude that the deletion of VDAC somehow results in a modification of MCC's voltage dependence. In fact, the voltage profile recorded from the VDAC-less mutant resembles that of VDAC
Quaternary Structure of the Mitochondrial TIM23 Complex Reveals Dynamic Association between Tim23p and Other Subunits
Tim23p is an essential channel-forming component of the multisubunit TIM23 complex of the mitochondrial inner membrane that mediates protein import. Radiolabeled Tim23p monocysteine mutants were imported in vitro, incorporated into functional TIM23 complexes, and subjected to chemical cross-linking. Three regions of proximity between Tim23p and other subunits of the TIM23 complex were identified: Tim17p and the first transmembrane segment of Tim23p; Tim50p and the C-terminal end of the Tim23p hydrophilic region; and the entire hydrophilic domains of Tim23p molecules. These regions of proximity reversibly change in response to changes in membrane potential across the inner membrane and also when a translocating substrate is trapped in the TIM23 complex. These structural changes reveal that the macromolecular arrangement within the TIM23 complex is dynamic and varies with the physiological state of the mitochondrion
Katanin Knockdown Supports a Role for Microtubule Severing in Release of Basal Bodies before Mitosis in Chlamydomonas
Katanin is a microtubule-severing protein that participates in the regulation of cell cycle progression and in ciliary disassembly, but its precise role is not known for either activity. Our data suggest that in Chlamydomonas, katanin severs doublet microtubules at the proximal end of the flagellar transition zone, allowing disengagement of the basal body from the flagellum before mitosis. Using an RNA interference approach we have discovered that severe knockdown of the p60 subunit of katanin, KAT1, is achieved only in cells that also carry secondary mutations that disrupt ciliogenesis. Importantly, we observed that cells in the process of cell cycle-induced flagellar resorption sever the flagella from the basal bodies before resorption is complete, and we find that this process is defective in KAT1 knockdown cells