148 research outputs found

    Microstructure and Phase Behavior in Colloids and Liquid Crystals

    Get PDF
    This thesis describes our investigation of microstructure and phase behavior in colloids and liquid crystals. The first set of experiments explores the phase behavior of helical packings of thermoresponsive microspheres inside glass capillaries as a function of volume fraction. Stable helical packings are observed with long-range orientational order. Some of these packings evolve abruptly to disordered states as the volume fraction is reduced. We quantify these transitions using correlation functions and susceptibilities of an orientational order parameter. The emergence of coexisting metastable packings, as well as coexisting ordered and disordered states, is also observed. These findings support the notion of phase-transition-like behavior in quasi-one-dimensional systems. The second set of experiments investigates cross-over behavior from glasses with attractive interactions to sparse gel-like states. In particular, the vibrational modes of quasi-two-dimensional disordered colloidal packings of hard colloidal spheres with short-range attractions are measured as a function of packing fraction. A crossover from glassy to sparse gel-like states is indicated by an excess of low-frequency phonon modes. This change in vibrational mode distribution appears to arise from highly localized vibrations that tend to involve individual and/or small clusters of particles with few local bonds. These mode behaviors and corresponding structural insights may serve as a useful signature for glass-gel transitions in wider classes of attractive packings. A third set of experiments explores the director structures of aqueous lyotropic chromonic liquid crystal (LCLC) films created on square lattice cylindrical-micropost substrates. The structures are manipulated by modulating of the concentration-dependent elastic properties of LCLC s via drying. Nematic LCLC films exhibit preferred bistable alignment along the diagonals of the micropost lattice. Columnar LCLC films form two distinct director and defect configurations: a diagonally aligned director pattern with local squares of defects, and an off-diagonal configuration with zig-zag defects. The formation of these patterns appears to be tied to the relative free energy costs of splay and bend deformations in the precursor nematic films. The observed nematic and columnar configurations are understood numerically using a Landau-de Gennes free energy model. This work provides first examples of quasi-2D micropatterning of LC films in the columnar phase and the first micropatterning of lyotropic LC films in general, as well as demonstrating alignment and configuration switching of typically difficult-to-align LCLC films via bulk elastic properties

    Multi-method in-vitro and in-vivo evaluation of coacervation and deposition behavior in cleansing formulations

    Get PDF
    The inclusion of cationic polymers in cleansing formulations is a commonly utilized practice to provide conditioned after-feel to skin and hair and increase the efficiency of insoluble benefit agent deposition. However, predicting the efficiency of polymer-surfactant complexation (coacervation) and the resulting deposition efficacy of polymer complexes and insoluble actives purely from formulation components remains a challenge, due to the complex interactions of polymer, surfactant and solution properties. In this work, we validate and implement multiple methods for rapidly screening and quantifying dilution-induced polymer precipitation and deposition in cleansing formulations. We then utilize these methods to verify and compare deposition behavior in several well-utilized polymer-surfactant systems and commercial cleansing products. Please click Additional Files below to see the full abstract

    Effects of Particle Shape on Growth Dynamics at Edges of Evaporating Colloidal Drops

    Full text link
    We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow inhomogeneously from the edge in two-dimensions, and the deposition front, or growth line, varies spatio-temporally. Measurements of the fluctuations of the deposition front during evaporation enable us to identify distinct growth processes that depend strongly on particle shape. Sphere deposition exhibits a classic Poisson like growth process; deposition of slightly anisotropic particles, however, belongs to the Kardar-Parisi-Zhang (KPZ) universality class, and deposition of highly anisotropic ellipsoids appears to belong to a third universality class, characterized by KPZ fluctuations in the presence of quenched disorder

    Helical Packings and Phase Transformations of Soft Spheres in Cylinders

    Get PDF
    The phase behavior of helical packings of thermoresponsive microspheres inside glass capillaries is studied as a function of volume fraction. Stable packings with long-range orientational order appear to evolve abruptly to disordered states as particle volume fraction is reduced, consistent with recent hard sphere simulations. We quantify this transition using correlations and susceptibilities of the orientational order parameter psi_6. The emergence of coexisting metastable packings, as well as coexisting ordered and disordered states, is also observed. These findings support the notion of phase transition-like behavior in quasi-1D systems.Comment: 5 pages, with additional 4 pages of supplemental material, accepted to Physical Review E: Rapid Communication

    Elasticity-Dependent Self-assembly of Micro-Templated Chromonic Liquid Crystal Films

    Get PDF
    We explore micropatterned director structures of aqueous lyotropic chromonic liquid crystal (LCLC) films created on square lattice cylindrical-micropost substrates. The structures are manipulated by modulating the LCLC mesophases and their elastic properties via concentration through drying. Nematic LCLC films exhibit preferred bistable alignment along the diagonals of the micropost lattice. Columnar LCLC films, dried from nematics, form two distinct director and defect configurations: a diagonally aligned director pattern with local squares of defects, and an off-diagonal configuration with zig-zag defects. The formation of these states appears to be tied to the relative splay and bend free energy costs of the initial nematic films. The observed nematic and columnar configurations are understood numerically using a Landau-de Gennes free energy model. Among other attributes, the work provide first examples of quasi-2D micropatterning of LC films in the columnar phase and lyotropic LC films in general, and it demonstrates alignment and configuration switching of typically difficult-to-align LCLC films via bulk elastic properties.Comment: 9 pages; 9 figures; accepted for publication in Soft Matte

    Influence of Particle Shape on Bending Rigidity of Colloidal Monolayer Membranes and Particle Deposition during Droplet Evaporation in Confined Geometries

    Get PDF
    We investigate the influence of particle shape on the bending rigidity of colloidal monolayer membranes (CMMs) and on evaporative processes associated with these membranes. Aqueous suspensions of colloidal particles are confined between glass plates and allowed to evaporate. Confinement creates ribbonlike air-water interfaces and facilitates measurement and characterization of CMM geometry during drying. Interestingly, interfacial buckling events occur during evaporation. Extension of the description of buckled elastic membranes to our quasi-2D geometry enables the determination of the ratio of CMM bending rigidity to its Young’s modulus. Bending rigidity increases with increasing particle anisotropy, and particle deposition during evaporation is strongly affected by membrane elastic properties. During drying, spheres are deposited heterogeneously, but ellipsoids are not. Apparently, increased bending rigidity reduces contact line bending and pinning and induces uniform deposition of ellipsoids. Surprisingly, suspensions of spheres doped with a small number of ellipsoids are also deposited uniformly

    Effects of Particle Shape on Growth Dynamics at Edges of Evaporating Drops of Colloidal Suspensions

    Get PDF
    We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow inhomogeneously from the edge in two dimensions, and the deposition front, or growth line, varies spatiotemporally. Measurements of the fluctuations of the deposition front during evaporation enable us to identify distinct growth processes that depend strongly on particle shape. Sphere deposition exhibits a classic Poisson-like growth process; deposition of slightly anisotropic particles, however, belongs to the Kardar-Parisi-Zhang universality class, and deposition of highly anisotropic ellipsoids appears to belong to a third universality class, characterized by Kardar-Parisi-Zhang fluctuations in the presence of quenched disorder

    Vibrational and structural signatures of the crossover between dense glassy and sparse gel-like attractive colloidal packings

    Get PDF
    We investigate the vibrational modes of quasi-two-dimensional disordered colloidal packings of hard colloidal spheres with short-range attractions as a function of packing fraction. Certain properties of the vibrational density of states (vDOS) are shown to correlate with the density and structure of the samples (i.e., in sparsely versus densely packed samples). Specifically, a crossover from dense glassy to sparse gel-like states is suggested by an excess of phonon modes at low frequency and by a variation in the slope of the vDOS with frequency at low frequency. This change in phonon mode distribution is demonstrated to arise largely from localized vibrations that involve individual and/or small clusters of particles with few local bonds. Conventional order parameters and void statistics did not exhibit obvious gel-glass signatures as a function of volume fraction. These mode behaviors and accompanying structural insights offer a potentially new set of indicators for identification of glass-gel transitions and for assignment of gel-like versus glass-like character to a disordered solid material

    Coral community structure and recruitment in seagrass meadows

    Get PDF
    Coral communities are increasingly found to populate non-reef habitats prone to high environmental variability. Such sites include seagrass meadows, which are generally not considered optimal habitats for corals as a result of limited suitable substrate for settlement and substantial diel and seasonal fluctuations in physicochemical conditions relative to neighboring reefs. Interest in understanding the ability of corals to persist in non-reef habitats has grown, however little baseline data exists on community structure and recruitment of scleractinian corals in seagrass meadows. To determine how corals populate seagrass meadows, we surveyed the established and recruited coral community over 25 months within seagrass meadows at Little Cayman, Cayman Islands. Simultaneous surveys of established and recruited coral communities at neighboring back-reef sites were conducted for comparison. To fully understand the amount of environmental variability to which corals in each habitat were exposed, we conducted complementary surveys of physicochemical conditions in both seagrass meadows and back-reefs. Despite overall higher variability in physicochemical conditions, particularly pH, compared to the back-reef, 14 coral taxa were capable of inhabiting seagrass meadows, and multiple coral families were also found to recruit to these sites. However, coral cover and species diversity, richness, and evenness were lower at sites within seagrass meadows compared to back-reef sites. Although questions remain regarding the processes governing recruitment, these results provide evidence that seagrass beds can serve as functional habitats for corals despite high levels of environmental variability and suboptimal conditions compared to neighboring reefs

    An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations

    Full text link
    Constitutive models are important to biomechanics for two key reasons. First, constitutive modelling is an essential component of characterizing tissues' mechanical properties for informing theoretical and computational models of biomechanical systems. Second, constitutive models can be used as a theoretical framework for extracting and comparing key quantities of interest from material characterization experiments. Over the past five decades, the Ogden model has emerged as a popular constitutive model in soft tissue biomechanics with relevance to both informing theoretical and computational models and to comparing material characterization experiments. The goal of this short review is threefold. First, we will discuss the broad relevance of the Ogden model to soft tissue biomechanics and the general characteristics of soft tissues that are suitable for approximating with the Ogden model. Second, we will highlight exemplary uses of the Ogden model in brain tissue, blood clot and other tissues. Finally, we offer a tutorial on fitting the one-term Ogden model to pure shear experimental data via both an analytical approximation of homogeneous deformation and a finite-element model of the tissue domain. Overall, we anticipate that this short review will serve as a practical introduction to the use of the Ogden model in biomechanics. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.R21 HL161832 - NHLBI NIH HHSAccepted manuscrip
    • …
    corecore