99 research outputs found

    Evidence for time-reversal symmetry breaking of the superconducting state near twin-boundary interfaces in FeSe

    Get PDF
    Junctions and interfaces consisting of unconventional superconductors provide an excellent experimental playground to study exotic phenomena related to the phase of the order parameter. Not only the complex structure of unconventional order parameters have an impact on the Josephson effects, but also may profoundly alter the quasi-particle excitation spectrum near a junction. Here, by using spectroscopic-imaging scanning tunneling microscopy, we visualize the spatial evolution of the local density of states (LDOS) near twin boundaries (TBs) of the nodal superconductor FeSe. The π/2\pi/2 rotation of the crystallographic orientation across the TB twists the structure of the unconventional order parameter, which may, in principle, bring about a zero-energy LDOS peak at the TB. The LDOS at the TB observed in our study, in contrast, does not exhibit any signature of a zero-energy peak and an apparent gap amplitude remains finite all the way across the TB. The low-energy quasiparticle excitations associated with the gap nodes are affected by the TB over a distance more than an order of magnitude larger than the coherence length ξab\xi_{ab}. The modification of the low-energy states is even more prominent in the region between two neighboring TBs separated by a distance 7ξab\approx7\xi_{ab}. In this region the spectral weight near the Fermi level (±\approx\pm0.2~meV) due to the nodal quasiparticle spectrum is almost completely removed. These behaviors suggest that the TB induces a fully-gapped state, invoking a possible twist of the order parameter structure which breaks time-reversal symmetry.Comment: 12 pages, 6 figure

    Quantum criticality in inter-band superconductors

    Full text link
    In fermionic systems with different types of quasi-particles, attractive interactions can give rise to exotic superconducting states, as pair density wave (PDW) superconductivity and breached pairing. In the last years the search for these new types of ground states in cold atom and in metallic systems has been intense. In the case of metals the different quasi-particles may be the up and down spin bands in an external magnetic field or bands arising from distinct atomic orbitals that coexist at a common Fermi surface. These systems present a complex phase diagram as a function of the difference between the Fermi wave-vectors of the different bands. This can be controlled by external means, varying the density in the two-component cold atom system or, in a metal, by applying an external magnetic field or pressure. Here we study the zero temperature instability of the normal system as the Fermi wave-vectors mismatch of the quasi-particles (bands) is reduced and find a second order quantum phase transition to a PDW superconducting state. From the nature of the quantum critical fluctuations close to the superconducting quantum critical point (SQCP), we obtain its dynamic critical exponent. It turns out to be z=2z=2 and this allows to fully characterize the SQCP for dimensions d2d \ge 2.Comment: 5 pages, 1 figur

    Superconductivity induced by spark erosion in ZrZn2

    Full text link
    We show that the superconductivity observed recently in the weak itinerant ferromagnet ZrZn2 [C. Pfleiderer et al., Nature (London) 412, 58 (2001)] is due to remnants of a superconducting layer induced by spark erosion. Results of resistivity, susceptibility, specific heat and surface analysis measurements on high-quality ZrZn2 crystals show that cutting by spark erosion leaves a superconducting surface layer. The resistive superconducting transition is destroyed by chemically etching a layer of 5 microns from the sample. No signature of superconductivity is observed in rho(T) of etched samples at the lowest current density measured, J=675 Am-2, and at T < 45 mK. EDX analysis shows that spark-eroded surfaces are strongly Zn depleted. The simplest explanation of our results is that the superconductivity results from an alloy with higher Zr content than ZrZn2.Comment: Final published versio

    Magnetic field tuning of antiferromagnetic Yb3_{3}Pt4_{4}

    Get PDF
    We present measurements of the specific heat, magnetization, magnetocaloric effect and magnetic neutron diffraction carried out on single crystals of antiferromagnetic Yb3_{3}Pt4_{4}, where highly localized Yb moments order at TN=2.4T_{\rm N}=2.4 K in zero field. The antiferromagnetic order was suppressed to TN0T_{\rm N}\rightarrow 0 by applying a field of 1.85 T in the abab plane. Magnetocaloric effect measurements show that the antiferromagnetic phase transition is always continuous for TN>0T_{\rm N}>0, although a pronounced step in the magnetization is observed at the critical field in both neutron diffraction and magnetization measurements. These steps sharpen with decreasing temperature, but the related divergences in the magnetic susceptibility are cut off at the lowest temperatures, where the phase line itself becomes vertical in the field-temperature plane. As TN0T_{\rm N}\rightarrow0, the antiferromagnetic transition is increasingly influenced by a quantum critical endpoint, where TNT_{\rm N} ultimately vanishes in a first order phase transition.Comment: 9 pages, 6 figure

    Only Fermi-Liquids are Metals

    Full text link
    Any singular deviation from Landau Fermi-liquid theory appears to lead, for arbitrarily small concentration of impurities coupling to a non-conserved quantity, to a vanishing density of states at the chemical potential and infinite resistivity as temperature approaches zero. Applications to copper-oxide metals including the temperature dependence of the anisotropy in resistivity, and to other cases of non Fermi-liquids are discussed.Comment: 11 pages,revtex, 1 Postscript figur

    Renormalization group approach of itinerant electron systems near the Lifshitz point

    Full text link
    Using the renormalization approach proposed by Millis for the itinerant electron systems we calculated the specific heat coefficient γ(T)\gamma(T) for the magnetic fluctuations with susceptibility χ1δ+ωα+f(q)\chi^{-1}\sim |\delta+\omega|^\alpha+f(q) near the Lifshitz point. The constant value obtained for α=4/5\alpha=4/5 and the logarithmic temperature dependence, specific for the non-Fermi behavior, have been obtained in agreement with the experimental dat.Comment: 6 pages, Revte

    Localized moments and the stability of antiferromagnetic order in Yb3Pt4

    Full text link
    We present here the results of electrical resistivity {\rho}, magnetization M, ac susceptibility \c{hi}ac', and specific heat CM measurements that have been carried out on single crystals of Yb3Pt4 over a wide range of fields and temperatures. The 2.4-K N\'eel temperature that is found in zero field collapses under field to a first-order transition TN=0 at BCEP=1.85 T. In the absence of antiferromagnetic order, the specific heat CM(T,B), the magnetization M(T,B), and even the resistivity {\rho}(T,B) all display B/T scaling, indicating that they are dominated by strong paramagnetic fluctuations, where the only characteristic energy scale results from the Zeeman splitting of an energetically isolated, Yb doublet ground state. This paramagnetic scattering disappears with the onset of antiferromagnetic order, revealing Fermi liquid behavior {\Delta}{\rho}=AT2 that persists up to the antiferromagnetic phase line TN(B), but not beyond. The first-order character of TN=0 and the ubiquity of the paramagnetic fluctuations imply that non-Fermi-liquid behaviors are absent in Yb3Pt4. In contrast to heavy fermions such as YbRh2Si2, Yb3Pt4 represents an extremely simple regime of f-electron behavior where the Yb moments and conduction electrons are almost decoupled, and where Kondo physics plays little role.Comment: 10 pages,12 figure

    Whither Correlated Electron Theory?

    Full text link
    This is the text of the 'Theory' opening talk at the 2001 Strongly Correlated Electron Systems conference. It contains opinions about some of the outstanding scientific challenges facing the theory side of the correlated electrons field.Comment: 7 pages. No figures. To appear in Physica

    Field-induced quantum fluctuations in the heavy fermion superconductor CeCu2Ge2

    Get PDF
    Quantum-mechanical fluctuations in strongly correlated electron systems cause unconventional phenomena such as non-Fermi liquid behavior, and arguably high temperature superconductivity. Here we report the discovery of a field-tuned quantum critical phenomenon in stoichiometric CeCu2Ge2, a spin density wave ordered heavy fermion metal that exhibits unconventional superconductivity under ~ 10 GPa of applied pressure. Our finding of the associated quantum critical spin fluctuations of the antiferromagnetic spin density wave order, dominating the local fluctuations due to single-site Kondo effect, provide new information about the underlying mechanism that can be important in understanding superconductivity in this novel compound.Comment: Heavy Fermion, Quantum Critical Phenomeno

    Non Fermi Liquid Behaviour near a T=0T=0 spin-glass transition

    Full text link
    In this paper we study the competition between the Kondo effect and RKKY interactions near the zero-temperature quantum critical point of an Ising-like metallic spin-glass. We consider the mean-field behaviour of various physical quantities. In the `quantum- critical regime' non-analytic corrections to the Fermi liquid behaviour are found for the specific heat and uniform static susceptibility, while the resistivity and NMR relaxation rate have a non-Fermi liquid dependence on temperature.Comment: 15 pages, RevTex 3.0, 1 uuencoded ps. figure at the en
    corecore