1,381 research outputs found

    Ion-implantation-caused special damage profiles determined by spectroscopic ellipsometry in crystalline and in relaxed (annealed) amorphous silicon

    Get PDF
    We previously developed a fitting method of several parameters to evaluate ion-implantation-caused damage profiles from spectroscopic ellipsometry (SE) (M. Fried et al., J. Appl. Phys., 71 (1992) 2835). Our optical model consists of a stack of layers with fixed and equal thicknesses and damage levels described by a depth profile function (coupled half Gaussians). The complex refractive index of each layer is calculated from the actual damage level by Bruggeman effective medium approximation (EMA) using crystalline (c-Si) and amorphous (a-Si) silicon as end-points. Two examples are presented of the use of this method with modified optical models. First, we investigated the surface damage formed by room temperature B+ and N+ implantation into silicon. For the analysis of the SE data we added a near surface amorphous layer to the model with variable thickness. Second, we determined 20 keV B+ implantation-caused damage profiles in relaxed (annealed) amorphous silicon. In this special case, the complex refractive index of each layer was calculated from the actual damage level by the EMA using relaxed a-Si and implanted a-Si as end-points. The calculated profiles are compared with Monte Carlo simulations (TRIM code); good agreement is obtained

    Ion-implantation induced anomalous surface amorphization in silicon

    Get PDF
    Spectroscopic ellipsometry (SE), high-depth-resolution Rutherford backscattering (RBS) and channeling have been used to examine the surface damage formed by room temperature N and B implantation into silicon. For the analysis of the SE data we used the conventional method of assuming appropriate optical models and fitting the model parameters (layer thicknesses and volume fraction of the amorphous silicon component in the layers) by linear regression. The dependence of the thickness of the surface-damaged silicon layer (beneath the native oxide layer) on the implantation parameters was determined: the higher the dose, the thicker the disordered layer at the surface. The mechanism of the surface amorphization process is explained in relation to the ion beam induced layer-by-layer amorphization. The results demonstrate the applicability of Spectroscopic ellipsometry with a proper optical model. RBS, as an independent cross-checking method supported the constructed optical model

    Discontinuous unbinding of lipid multibilayers

    Get PDF
    We have observed a discontinuous unbinding transition of lipid bilayer stacks composed of phosphatidylethanolamine and phosphatidylglycerol using X-ray diffraction. The unbinding is reversible and coincides with the main (Lβ→Lα) transition of the lipid mixture. Interbilayer interaction potentials deduced from the diffraction data reveal that the bilayers in the Lβ phase are only weakly bound. The unbinding transition appears to be driven by an abrupt increase in steric repulsion resulting from increased thermal undulations of the bilayers upon entering the fluid Lαphase

    Etiological diagnosis in limb reduction defects and the number of affected limbs:A population-based study in the Northern Netherlands

    Get PDF
    Limb reduction defects (LRDs) that affect multiple limbs are considered to be more often heritable, but only few studies have substantiated this. We aimed to investigate if an etiological diagnosis (genetic disorder or clinically recognizable disorder) is more likely to be made when multiple limbs are affected compared to when only one limb is affected. We used data from EUROCAT Northern Netherlands and included 391 fetuses and children with LRDs born in 1981-2017. Cases were classified as having a transverse, longitudinal (preaxial/postaxial/central/mixed), intercalary, or complex LRD of one or more limbs and as having an isolated LRD or multiple congenital anomalies (MCA). We calculated the probability of obtaining an etiological diagnosis in cases with multiple affected limbs versus one affected limb using relative risk (RR) scores and Fisher's exact test. We showed that an etiological diagnosis was made three times more often when an LRD occurred in multiple limbs compared to when it occurred in one limb (RR 2.9, 95% CI 2.2-3.8, p <0.001). No genetic disorders were found in isolated cases with only one affected limb, whereas a genetic disorder was identified in 16% of MCA cases with one affected limb. A clinically recognizable disorder was found in 47% of MCA cases with one affected limb. Genetic counseling rates were similar. We conclude that reduction defects of multiple limbs are indeed more often heritable. Genetic testing seems less useful in isolated cases with one affected limb, but is warranted in MCA cases with one affected limb

    Magainin 2 and PGLa in bacterial membrane mimics III : membrane fusion and disruption

    Get PDF
    We previously speculated that the synergistically enhanced antimicrobial activity of Magainin 2 and PGLa is related to membrane adhesion, fusion, and further membrane remodelling. Here, we combined computer simulations with time-resolved in vitro fluorescence microscopy, cryogenic electron microscopy (cryo-EM), and small-angle X-ray scattering (SAXS) to interrogate such morphological and topological changes of vesicles at nanoscopic and microscopic length scales in real time. Coarse-grained simulations revealed the formation of an elongated and bent fusion zone between vesicles in the presence of equimolar peptide mixtures. Vesicle adhesion and fusion was observed to occur within few seconds by cryo-EM and corroborated by SAXS measurements. The latter experiments further indicated continued and time-extended structural remodelling also for individual peptides or chemically-linked peptide heterodimers, but with different kinetics. Fluorescence microscopy further captured peptide-dependent adhesion, fusion, and occasional bursting of giant unilamellar vesicles already few seconds after peptide addition. The synergistic interactions between the peptides shorten the time response of vesicles and enhance membrane fusogenic and disrupting properties of the equimolar mixture compared to the individual peptides

    Validation of the computational fluid–structure interaction simulation at real-scale tests of a flexible 29 m umbrella in natural wind flow

    Get PDF
    The sensitivity of membrane structures to wind loads due to their flexibility and small inertial masses raises the question of their behavior under natural wind conditions. Particularly transient wind loads could lead to dynamic amplification of the structural response. The assessment of the dynamic response of membrane structures is complex due to their special load carrying behavior, their material properties, and their distinct structural interaction with flow induced effects. Computationally intensive fluid&ndash;structure interaction simulation could overcome simplifications and limitations of existing approaches, especially small scale wind tunnel tests, and allow the assessment of all relevant structural and fluid phenomena. This paper outlines a virtual design methodology for lightweight flexible membrane structures under the impact of fluctuating wind loads and provides results on the unique validation of the method at real-scale tests of a highly flexible 29&nbsp;m umbrella

    Large-Eddy Simulations of a Supersonic Jet and Its Near-Field Acoustic Properties

    Get PDF
    Large-eddy simulations of imperfectly expanded jet flows from a convergent-divergent nozzle with a sharp contraction at the nozzle throat have been carried out. The flowfield and near-field acoustics for various total pressure ratios from overexpanded to underexpanded jet flow conditions have been investigated. The location and spacing of the shock cells are in good agreement with experimental data and previous theoretical results. The velocity profiles are also in good agreement with data from experimental measurements. A Mach disk is observed immediately downstream of the nozzle exit for overexpanded jet conditions with nozzle pressure ratios much lower than the fully expanded value. It is found that this type of nozzle with a sharp turning throat does not have a shock- free condition for supersonic jet flows. The near-field intensities of pressure fluctuations show wavy structures for cases in which screech tones are observed. The large-eddy simulations predictions of the near-field noise intensities show good agreement with those obtained from experimental measurements. This good agreement shows that large- eddy simulations and measurements can play complementary roles in the investigation of the noise generation from supersonic jet flows. &nbsp
    corecore