3,640 research outputs found

    Quantum Breathers in a Nonlinear Lattice

    Full text link
    We study nonlinear phonon excitations in a one-dimensional quantum nonlinear lattice model using numerical exact diagonalization. We find that multi-phonon bound states exist as eigenstates which are natural counterparts of breather solutions of classical nonlinear systems. In a translationally invariant system, these quantum breather states form particle-like bands and are characterized by a finite correlation length. The dynamic structure factor has significant intensity for the breather states, with a corresponding quenching of the neighboring bands of multi-phonon extended states.Comment: 4 pages, RevTex, 4 postscript figures, Physical Relview Letters (in press

    Multiple Histogram Method for Quantum Monte Carlo

    Full text link
    An extension to the multiple-histogram method (sometimes referred to as the Ferrenberg-Swendsen method) for use in quantum Monte Carlo simulations is presented. This method is shown to work well for the 2D repulsive Hubbard model, allowing measurements to be taken over a continuous region of parameters. The method also reduces the error bars over the range of parameter values due the overlapping of multiple histograms. A continuous sweep of parameters and reduced error bars allow one to make more difficult measurements, such as Maxwell constructions used to study phase separation. Possibilities also exist for this method to be used for other quantum systems.Comment: 4 pages, 5 figures, RevTeX, submitted to Phys. Rev. B Rapid Com

    Measurement of a reaction-diffusion crossover in exciton-exciton recombination inside carbon nanotubes using femtosecond optical absorption

    Get PDF
    Exciton-exciton recombination in isolated semiconducting single-walled carbon nanotubes was studied using femtosecond transient absorption. Under sufficient excitation to saturate the optical absorption, we observed an abrupt transition between reaction- and diffusion- limited kinetics, arising from reactions between incoherent localized excitons with a finite probability of ~ 0.2 per encounter. This represents the first experimental observation of a crossover between classical and critical kinetics in a 1D coalescing random walk, which is a paradigm for the study of non- equilibrium systems.Comment: Accepted for Physical Review Letters. Title changed, and "exciton fusion" replaced by "exciton-exciton recombination". Present address of Prof Tom Brown added. 12 pages plus 3 figure

    Two-dimensional Superfluidity and Localization in the Hard-Core Boson Model: a Quantum Monte Carlo Study

    Full text link
    Quantum Monte Carlo simulations are used to investigate the two-dimensional superfluid properties of the hard-core boson model, which show a strong dependence on particle density and disorder. We obtain further evidence that a half-filled clean system becomes superfluid via a finite temperature Kosterlitz-Thouless transition. The relationship between low temperature superfluid density and particle density is symmetric and appears parabolic about the half filling point. Disorder appears to break the superfluid phase up into two distinct localized states, depending on the particle density. We find that these results strongly correlate with the results of several experiments on high-TcT_c superconductors.Comment: 10 pages, 3 figures upon request, RevTeX version 3, (accepted for Phys. Rev. B

    Impact of Smoking Status on Mortality in STEMI Patients Undergoing Mechanical Reperfusion for STEMI: Insights from the ISACS-STEMI COVID-19 Registry

    Get PDF
    The so-called \"smoking paradox\", conditioning lower mortality in smokers among STEMI patients, has seldom been addressed in the settings of modern primary PCI protocols. The ISACS-STEMI COVID-19 is a large-scale retrospective multicenter registry addressing in-hospital mortality, reperfusion, and 30-day mortality among primary PCI patients in the era of the COVID-19 pandemic. Among the 16,083 STEMI patients, 6819 (42.3%) patients were active smokers, 2099 (13.1%) previous smokers, and 7165 (44.6%) non-smokers. Despite the impaired preprocedural recanalization (p < 0.001), active smokers had a significantly better postprocedural TIMI flow compared with non-smokers (p < 0.001); this was confirmed after adjustment for all baseline and procedural confounders, and the propensity score. Active smokers had a significantly lower in-hospital (p < 0.001) and 30-day (p < 0.001) mortality compared with non-smokers and previous smokers; this was confirmed after adjustment for all baseline and procedural confounders, and the propensity score. In conclusion, in our population, active smoking was significantly associated with improved epicardial recanalization and lower in-hospital and 30-day mortality compared with previous and non-smoking history

    microRNAs regulate cell-to-cell variability of endogenous target gene expression in developing mouse thymocytes

    Get PDF
    The development and homeostasis of multicellular organisms relies on gene regulation within individual constituent cells. Gene regulatory circuits that increase the robustness of gene expression frequently incorporate microRNAs as post-transcriptional regulators. Computational approaches, synthetic gene circuits and observations in model organisms predict that the co-regulation of microRNAs and their target mRNAs can reduce cell-to-cell variability in the expression of target genes. However, whether microRNAs directly regulate variability of endogenous gene expression remains to be tested in mammalian cells. Here we use quantitative flow cytometry to show that microRNAs impact on cell-to-cell variability of protein expression in developing mouse thymocytes. We find two distinct mechanisms that control variation in the activation-induced expression of the microRNA target CD69. First, the expression of miR-17 and miR-20a, two members of the miR-17-92 cluster, is coregulated with the target mRNA Cd69 to form an activation-induced incoherent feed-forward loop. Another microRNA, miR-181a, acts at least in part upstream of the target mRNA Cd69 to modulate cellular responses to activation. The ability of microRNAs to render gene expression more uniform across mammalian cell populations may be important for normal development and for disease

    Carbon nanotube thin film strain sensors: comparison between experimental tests and numerical simulations

    Full text link
    Carbon nanotubes can be randomly deposited in polymer thin film matrices to form nanocomposite strain sensors. However, a computational framework that enables the direct design of these nanocomposite thin films is still lacking. The objective of this study is to derive an experimentally validated and two-dimensional numerical model of carbon nanotube-based thin film strain sensors. This study consisted of two parts. First, multi-walled carbon nanotube (MWCNT)-Pluronic strain sensors were fabricated using vacuum filtration, and their physical, electrical, and electromechanical properties were evaluated. Second, scanning electron microscope images of the films were used for identifying topological features of the percolated MWCNT network, where the information obtained was then utilized for developing the numerical model. Validation of the numerical model was achieved by ensuring that the area ratios (of MWCNTs relative to the polymer matrix) were equivalent for both the experimental and modeled cases. Strain sensing behavior of the percolation-based model was simulated and then compared to experimental test results

    Hall effect of charge carriers in a correlated system

    Full text link
    The dynamical Hall response in a correlated electronic system is analysed within the linear response theory for tight binding models. At T=0T=0 the d.c. Hall constant for a single quasiparticle is expressed explicitly via the charge stiffness, and a semiclassical result is recovered. As expected a hole-like response is found for the mobile hole introduced into a quantum antiferromagnet, as represented by the tJt-J model.Comment: 4 pages, RevTeX, no figure

    New measurement of θ13\theta_{13} via neutron capture on hydrogen at Daya Bay

    Full text link
    This article reports an improved independent measurement of neutrino mixing angle θ13\theta_{13} at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse β\beta-decays with the emitted neutron captured by hydrogen, yielding a data-set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. The dominant statistical uncertainty was reduced by 49%. Intensive studies of the cosmogenic muon-induced 9^9Li and fast neutron backgrounds and the neutron-capture energy selection efficiency, resulted in a reduction of the systematic uncertainty by 26%. The deficit in the detected number of antineutrinos at the far detectors relative to the expected number based on the near detectors yielded sin22θ13=0.071±0.011\sin^22\theta_{13} = 0.071 \pm 0.011 in the three-neutrino-oscillation framework. The combination of this result with the gadolinium-capture result is also reported.Comment: 26 pages, 23 figure
    corecore