60 research outputs found

    The Role of School Discipline from the Students’ Point of View

    Get PDF
    Regarding the topic of discipline management in the educational practice, there are legitimate concerns and many pedagogical questions that need to be addressed, given that the attainment of discipline is a significant issue in schools. The main purpose of this research is to determine whether primary and secondary school students have comprehended the role of discipline and rules in school and, in particular, in educational practice. In addition, related issues are investigated, such as the student’s undisciplined or problematic behavior, the causes of indiscipline phenomena, as well as, the pedagogical means available to the teacher for creating propitious conditions of communication and relationship with the students, which contribute to the effective management of both the educational process and the challenging matters related to the attainment of classroom discipline and in general, of school discipline. As it is indicated by the findings of this research, the responses of the students of primary and secondary school enlighten the questions addressed in the questionnaire. This paper concludes with the research outcomes

    Classical Density Functional Study on Interfacial Structure and Differential Capacitance of Ionic Liquids near Charged Surfaces

    Get PDF
    We have implemented a generic coarse-grained model for the aromatic ionic liquid [CnMIM+][Tf2N-]. Various lengths for the alkyl chain on the cation define a homologous series, whose electric properties are expected to vary in a systematic way. Within the framework of a classical density functional theory, the interfacial structures of members of this series are compared over a range of surface charge densities, alkyl chain lengths, and surface geometries. The differential capacitance of the electric double layer, formed by ionic liquids against a charged electrode, is calculated as a function of the surface electric potential. A comparison of planar, cylindrical, and spherical surfaces confirms that the differential capacitance increases and varies less with surface potential as the surface curvature increases. Our results are in qualitative agreement with recent atomistic simulations

    Radiation Type- and Dose-Specific Transcriptional Responses across Healthy and Diseased Mammalian Tissues

    Get PDF
    Ionizing radiation (IR) is a genuine genotoxic agent and a major modality in cancer treatment. IR disrupts DNA sequences and exerts mutagenic and/or cytotoxic properties that not only alter critical cellular functions but also impact tissues proximal and distal to the irradiated site. Unveiling the molecular events governing the diverse effects of IR at the cellular and organismal levels is relevant for both radiotherapy and radiation protection. Herein, we address changes in the expression of mammalian genes induced after the exposure of a wide range of tissues to various radiation types with distinct biophysical characteristics. First, we constructed a publicly available database, termed RadBioBase, which will be updated at regular intervals. RadBioBase includes comprehensive transcriptomes of mammalian cells across healthy and diseased tissues that respond to a range of radiation types and doses. Pertinent information was derived from a hybrid analysis based on stringent literature mining and transcriptomic studies. An integrative bioinformatics methodology, including functional enrichment analysis and machine learning techniques, was employed to unveil the characteristic biological pathways related to specific radiation types and their association with various diseases. We found that the effects of high linear energy transfer (LET) radiation on cell transcriptomes significantly differ from those caused by low LET and are consistent with immunomodulation, inflammation, oxidative stress responses and cell death. The transcriptome changes also depend on the dose since low doses up to 0.5 Gy are related with cytokine cascades, while higher doses with ROS metabolism. We additionally identified distinct gene signatures for different types of radiation. Overall, our data suggest that different radiation types and doses can trigger distinct trajectories of cell-intrinsic and cell-extrinsic pathways that hold promise to be manipulated toward improving radiotherapy efficiency and reducing systemic radiotoxicities

    Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies

    Full text link
    It has been assumed until very recently that all long-range correlations are screened in three-dimensional melts of linear homopolymers on distances beyond the correlation length ξ\xi characterizing the decay of the density fluctuations. Summarizing simulation results obtained by means of a variant of the bond-fluctuation model with finite monomer excluded volume interactions and topology violating local and global Monte Carlo moves, we show that due to an interplay of the chain connectivity and the incompressibility constraint, both static and dynamical correlations arise on distances rξr \gg \xi. These correlations are scale-free and, surprisingly, do not depend explicitly on the compressibility of the solution. Both monodisperse and (essentially) Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure

    Molecular dynamics simulation studies of the interactions between ionic liquids and amino acids in aqueous solution

    Get PDF
    Although the understanding of the influence of ionic liquids (ILs) on the solubility behavior of biomolecules in aqueous solutions is relevant for the design and optimization of novel biotechnological processes, the underlying molecular-level mechanisms are not yet consensual or clearly elucidated. In order to contribute to the understanding of the molecular interactions established between amino acids and ILs in aqueous media, classical molecular dynamics (MD) simulations were performed for aqueous solutions of five amino acids with different structural characteristics (glycine, alanine, valine, isoleucine, and glutamic acid) in the presence of 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonyl imide. The results from MD simulations enable to relate the properties of the amino acids, namely their hydrophobicity, to the type and strength of their interactions with ILs in aqueous solutions and provide an explanation for the direction and magnitude of the solubility phenomena observed in [IL + amino acid + water] systems by a mechanism governed by a balance between competitive interactions of the IL cation, IL anion, and water with the amino acids

    Multiscale Molecular Simulations of Polymer-Matrix Nanocomposites

    Get PDF

    The Role of Human Endogenous Retroviruses in Cancer Immunotherapy of the Post-COVID-19 World

    No full text
    At the outbreak of the COVID-19 global crisis, diverse scientific groups suggested that this unprecedented emergency could act as a ‘blessing in disguise’ [...

    Multiplex PCR for the discrimination of A. fumigatus, A. flavus, A. niger and A. terreus

    No full text
    Aspergillus pathogens usually infect immunocompromised patients with lethal outcome. We report a multiplex PCR assay for the discrimination of the most frequent Aspergillus pathogens, A. fumigatus, A. flavus, A. niger and A. terreus, through distinct amplicons of 250 bp, 200 bp, 150 bp and 450 bp respectively, derived from the rDNA gene of A. terreus and the aspergillopepsin genes of the remaining species. © 2008 Elsevier B.V. All rights reserved
    corecore