25 research outputs found

    Impact of Casimir force in molecular electronic switching junctions

    No full text
    Despite significant progress In synthesizing several new molecules and many promising single device demonstrations, wide range acceptance of molecular electronics as an alternative to CMOS technology has been stalled not only by controversial theories of a molecular device's operation, for example the switching mechanism, but also by our inability to reproducibly fabricate large arrays of devices. In this paper, we investigate the role of Casimir force as one of the potential source of a wide range of discrepancies in the reported electrical characteristics and high rate of device shorting in molecular electronic switching junctions fabricated by sandwiching a molecular monolayer between a pair of planar metal electrodes

    Ensembles of indium phosphide nanowires: physical properties and functional devices integrated on non-single crystal platforms

    No full text
    A new route to grow an ensemble of indium phosphide single-crystal semiconductor nanowires is described. Unlike conventional epitaxial growth of single-crystal semiconductor films, the proposed route for growing semiconductor nanowires does not require a single-crystal semiconductor substrate. In the proposed route, instead of using single-crystal semiconductor substrates that are characterized by their long-range atomic ordering, a template layer that possesses short-range atomic ordering prepared on a non-single-crystal substrate is employed. On the template layer, epitaxial information associated with its short-range atomic ordering is available within an area that is comparable to that of a nanowire root. Thus the template layer locally provides epitaxial information required for the growth of semiconductor nanowires. In the particular demonstration described in this paper, hydrogenated silicon was used as a template layer for epitaxial growth of indium phosphide nanowires. The indium phosphide nanowires grown on the hydrogenerated silicon template layer were found to be single crystal and optically active. Simple photoconductors and pin-diodes were fabricated and tested with the view towards various optoelectronic device applications where group III–V compound semiconductors are functionally integrated onto non-single-crystal platforms
    corecore