99 research outputs found

    Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study

    Full text link
    The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation, and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.Comment: Submitted to 'Systems Medicine' as a book chapte

    Image based machine learning for identification of macrophage subsets

    Get PDF
    Macrophages play a crucial rule in orchestrating immune responses against pathogens and foreign materials. Macrophages have remarkable plasticity in response to environmental cues and are able to acquire a spectrum of activation status, best exemplified by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at the two ends of the spectrum. Characterisation of M1 and M2 subsets is usually carried out by quantification of multiple cell surface markers, transcription factors and cytokine profiles. These approaches are time consuming, require large numbers of cells and are resource intensive. In this study, we used machine learning algorithms to develop a simple and fast imaging-based approach that enables automated identification of different macrophage functional phenotypes using their cell size and morphology. Fluorescent microscopy was used to assess cell morphology of different cell types which were stained for nucleus and actin distribution using DAPI and phalloidin respectively. By only analysing their morphology we were able to identify M1 and M2 phenotypes effectively and could distinguish them from naïve macrophages and monocytes with an average accuracy of 90%. Thus we suggest high-content and automated image analysis can be used for fast phenotyping of functionally diverse cell populations with reasonable accuracy and without the need for using multiple markers

    Natural environments, ancestral diets, and microbial ecology: is there a modern “paleo-deficit disorder”? Part I

    Get PDF

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    The Usability of E-learning Platforms in Higher Education: A Systematic Mapping Study

    Get PDF
    The use of e-learning in higher education has increased significantly in recent years, which has led to several studies being conducted to investigate the usability of the platforms that support it. A variety of different usability evaluation methods and attributes have been used, and it has therefore become important to start reviewing this work in a systematic way to determine how the field has developed in the last 15 years. This paper describes a systematic mapping study that performed searches on five electronic libraries to identify usability issues and methods that have been used to evaluate e-learning platforms. Sixty-one papers were selected and analysed, with the majority of studies using a simple research design reliant on questionnaires. The usability attributes measured were mostly related to effectiveness, satisfaction, efficiency, and perceived ease of use. Furthermore, several research gaps have been identified and recommendations have been made for further work in the area of the usability of online learning

    The 42nd Sir Frederic Bartlett Lecture

    No full text
    corecore