553 research outputs found

    Development of manufacturing techniques for application of high performance cryogenic insulation Final report, Jun. 21 - Oct. 20, 1967

    Get PDF
    High performance insulation design, and manufacturing plan of torus tank for Saturn 5 vehicl

    Apollo Lunar Sample Integration into Google Moon: A New Approach to Digitization

    Get PDF
    The Google Moon Apollo Lunar Sample Data Integration project is part of a larger, LASER-funded 4-year lunar rock photo restoration project by NASA s Acquisition and Curation Office [1]. The objective of this project is to enhance the Apollo mission data already available on Google Moon with information about the lunar samples collected during the Apollo missions. To this end, we have combined rock sample data from various sources, including Curation databases, mission documentation and lunar sample catalogs, with newly available digital photography of rock samples to create a user-friendly, interactive tool for learning about the Apollo Moon sample

    Cryogenic positive expulsion diaphragms Final report, Oct. 1967 - Jun. 1970

    Get PDF
    Design fabrication and cycle tests of polymeric film expulsion bladders for liquid hydroge

    On the possible role of elemental carbon in the formation of reduced chondrules

    Get PDF
    Recent experiments have been designed to produce chondrule textures via flash melting while simultaneously studying the nature of chondrule precursors. However, these experiments have only been concerned with silicate starting material. This is a preliminary report concerning what effects elemental carbon, when added to the silicate starting material, has on the origin of chondrules produced by flash melting

    Processing and Transmission of Information

    Get PDF
    Contains reports on seven research projects.Lincoln Laboratory (Purchase Order DDL-B222

    Restoration and PDS Archive of Apollo Lunar Rock Sample Data

    Get PDF
    In 2008, scientists at the Johnson Space Center (JSC) Lunar Sample Laboratory and Image Science & Analysis Laboratory (under the auspices of the Astromaterials Research and Exploration Science Directorate or ARES) began work on a 4-year project to digitize the original film negatives of Apollo Lunar Rock Sample photographs. These rock samples together with lunar regolith and core samples were collected as part of the lander missions for Apollos 11, 12, 14, 15, 16 and 17. The original film negatives are stored at JSC under cryogenic conditions. This effort is data restoration in the truest sense. The images represent the only record available to scientists which allows them to view the rock samples when making a sample request. As the negatives are being scanned, they are also being formatted and documented for permanent archive in the NASA Planetary Data System (PDS) archive. The ARES group is working collaboratively with the Imaging Node of the PDS on the archiving

    Micronutrient Adequacy in Preschool Children Attending Family Child Care Homes

    Get PDF
    Limited data is available on the micronutrient intake and adequacy in preschool children enrolled in family child care homes (FCCH). The goal of this paper is to describe the micronutrient adequacy relative to age-specific recommendations of preschool-aged children (aged 2–5 years) attending FCCH in Rhode Island (RI). Dietary data among younger preschoolers (aged 2–3 years), n = 245) and older preschoolers (aged 4–5 years), n = 121) in 118 RI FCCH (N = 366 children) were analyzed. Nutrient adequacy was assessed as the amount of nutrient per 1000 kcal of the diet that would meet the Institute of Medicine nutrient requirements (critical nutrient density), and it was compared to the observed nutrient densities of the children. The sodium:potassium ratio was also calculated. For most micronutrients, the observed density met or exceeded the recommendation, meaning the children’s intake was adequate. However, a high proportion of children had nutrient densities under the recommendation for vitamins D, E, K, and potassium (86.1%, 89.1%, 70.8%, and 99.2% of children, respectively). The mean vitamin B12, potassium, and zinc densities were statistically higher in younger vs. older preschoolers (p \u3c 0.05 for all). Low densities in calcium and vitamins K and B5 were more frequent in older children vs. younger children (p \u3c 0.05). In addition, older preschoolers had a higher sodium:potassium ratio than younger children (p \u3c 0.05). The micronutrient intake density was adequate for most nutrients. However, intake of some nutrients was of concern. Further attention to training and compliance in FCCH may improve the diet quality of those cared for in these settings

    Science Operations for the 2008 NASA Lunar Analog Field Test at Black Point Lava Flow, Arizona

    Get PDF
    Surface science operations on the Moon will require merging lessons from Apollo with new operation concepts that exploit the Constellation Lunar Architecture. Prototypes of lunar vehicles and robots are already under development and will change the way we conduct science operations compared to Apollo. To prepare for future surface operations on the Moon, NASA, along with several supporting agencies and institutions, conducted a high-fidelity lunar mission simulation with prototypes of the small pressurized rover (SPR) and unpressurized rover (UPR) (Fig. 1) at Black Point lava flow (Fig. 2), 40 km north of Flagstaff, Arizona from Oct. 19-31, 2008. This field test was primarily intended to evaluate and compare the surface mobility afforded by unpressurized and pressurized rovers, the latter critically depending on the innovative suit-port concept for efficient egress and ingress. The UPR vehicle transports two astronauts who remain in their EVA suits at all times, whereas the SPR concept enables astronauts to remain in a pressurized shirt-sleeve environment during long translations and while making contextual observations and enables rapid (less than or equal to 10 minutes) transfer to and from the surface via suit-ports. A team of field geologists provided realistic science scenarios for the simulations and served as crew members, field observers, and operators of a science backroom. Here, we present a description of the science team s operations and lessons learned

    Process for Making Single-Domain Magnetite Crystals

    Get PDF
    A process for making chemically pure, single-domain magnetite crystals substantially free of structural defects has been invented as a byproduct of research into the origin of globules in a meteorite found in Antarctica and believed to have originated on Mars. The globules in the meteorite comprise layers of mixed (Mg, Fe, and Ca) carbonates, magnetite, and iron sulfides. Since the discovery of the meteorite was announced in August 1996, scientists have debated whether the globules are of biological origin or were formed from inorganic materials by processes that could have taken place on Mars. While the research that led to the present invention has not provided a definitive conclusion concerning the origin of the globules, it has shown that globules of a different but related chemically layered structure can be grown from inorganic ingredients in a multistep precipitation process. As described in more detail below, the present invention comprises the multistep precipitation process plus a subsequent heat treatment. The multistep precipitation process was demonstrated in a laboratory experiment on the growth of submicron ankerite crystals, overgrown by submicron siderite and pyrite crystals, overgrown by submicron magnesite crystals, overgrown by submicron siderite and pyrite. In each step, chloride salts of appropriate cations (Ca, Fe, and Mg) were dissolved in deoxygenated, CO2- saturated water. NaHCO3 was added as a pH buffer while CO2 was passed continuously through the solution. A 15-mL aliquot of the resulting solution was transferred into each of several 20 mL, poly(tetrafluoroethylene)-lined hydrothermal pressure vessels. The vessels were closed in a CO2 atmosphere, then transferred into an oven at a temperature of 150 C. After a predetermined time, the hydrothermal vessels were removed from the oven and quenched in a freezer. Supernatant solutions were decanted, and carbonate precipitates were washed free of soluble salts by repeated decantations with deionized water

    Improving the lake scheme within a coupled WRF‐lake model in the Laurentian Great Lakes

    Full text link
    In this study, a one‐dimensional (1‐D) thermal diffusion lake model within the Weather Research and Forecasting (WRF) model was investigated for the Laurentian Great Lakes. In the default 10‐layer lake model, the albedos of water and ice are specified with constant values, 0.08 and 0.6, respectively, ignoring shortwave partitioning and zenith angle, ice melting, and snow effect. Some modifications, including a dynamic lake surface albedo, tuned vertical diffusivities, and a sophisticated treatment of snow cover over lake ice, have been added to the lake model. A set of comparison experiments have been carried out to evaluate the performances of different lake schemes in the coupled WRF‐lake modeling system. Results show that the 1‐D lake model is able to capture the seasonal variability of lake surface temperature (LST) and lake ice coverage (LIC). However, it produces an early warming and quick cooling of LST in deep lakes, and excessive and early persistent LIC in all lakes. Increasing vertical diffusivity can reduce the bias in the 1‐D lake but only in a limited way. After incorporating a sophisticated treatment of lake surface albedo, the new lake model produces a more reasonable LST and LIC than the default lake model, indicating that the processes of ice melting and snow accumulation are important to simulate lake ice in the Great Lakes. Even though substantial efforts have been devoted to improving the 1‐D lake model, it still remains considerably challenging to adequately capture the full dynamics and thermodynamics in deep lakes.Key PointsA dynamic lake surface albedo scheme is added to the lake modelThe new lake model produces a more reasonable LST and LIC than the default lake modelIce melting and snow accumulation are important to simulating lake ice in the Great LakesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135995/1/jame20346_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135995/2/jame20346.pd
    corecore