63 research outputs found
Adding rotation to translation: percepts and illusions
This study investigated how the perception of a translating object is affected by rotation. Observers were asked to judge the motion and trajectory of objects that rotated around their centroid while linearly translating. The expected percept, consistent with the actual dynamics used to generate the movie sequences, is that of a translating and rotating object, akin to a tumbling rugby ball. Observers, however, do not always report this and, under certain circumstances, perceive the object to translate on an illusory curved trajectory, similar to a car driving on a curved road. The prevalence of veridical versus nonveridical percepts depends on a number of factors. First, if the object's orientation remains within a limited range relative to the axis of translation, the illusory, curved percept dominates. If the orientation, at any point of the movie sequence, differs sufficiently from the axis of translation, the percept switches to linear translation with rotation. The angle at which the switch occurs is dependent upon a number of factors that relate to an object's elongation and, with it, the prominence of its orientation. For an ellipse with an aspect ratio of 3, the switch occurs at approximately 45°. Higher aspect ratios increase the range; lower ratios decrease it. This applies similarly to rectangular shapes. A line is more likely to be perceived on a curved trajectory than an elongated rectangle, which, in turn, is more likely seen on a curved path than a square. This is largely independent of rotational and translational speeds. Measuring perceived directions of motion at different instants in time allows the shape of the perceived illusory curved path to be extrapolated. This results in a trajectory that is independent of object size and corresponds closely to the actual object orientation at different points during the movie sequence. The results provide evidence for a perceptual transition from an illusory curved trajectory to a veridical linear trajectory (with rotation) for the same object. Both are consistent with special real-world cases such as objects rotating around a centre outside of the object so that their orientation remains tangent to the trajectory (cheetahs running along a curve, sailboats) or objects tumbling along simple trajectories (a monkey spinning in air, spinning cars on ice). In certain cases, the former is an illusion. </jats:p
Imagining circles: empirical data and a perceptual model for the arc-size illusion
An essential part of visual object recognition is the evaluation of the curvature of both an object's outline as well as the contours on its surface. We studied a striking illusion of visual curvature--the arc-size illusion (ASI)--to gain insight into the visual coding of curvature. In the ASI, short arcs are perceived as flatter (less curved) compared to longer arcs of the same radius. We investigated if and how the ASI depends on (i) the physical size of the stimulus and (ii) on the length of the arc. Our results show that perceived curvature monotonically increases with arc length up to an arc angle of about 60°, thereafter remaining constant and equal to the perceived curvature of a full circle. We investigated if the misjudgment of curvature in the ASI translates into predictable biases for three other perceptual tasks: (i) judging the position of the centre of circular arcs; (ii) judging if two circular arcs fall on the circumference of the same (invisible) circle and (iii) interpolating the position of a point on the circumference of a circle defined by two circular arcs. We found that the biases in all the above tasks were reliably predicted by the same bias mediating the ASI. We present a simple model, based on the central angle subtended by an arc, that captures the data for all tasks. Importantly, we argue that the ASI and related biases are a consequence of the fact that an object's curvature is perceived as constant with viewing distance, in other words is perceptually scale invariant
Set-size effects for sampled shapes: experiments and model
The location of imperfections or heterogeneities in shapes and contours often correlates with points of interest in a visual scene. Investigating the detection of such heterogeneities provides clues as to the mechanisms processing simple shapes and contours. We determined set-size effects (e.g., sensitivity to single target detection as distractor number increases) for sampled contours to investigate how the visual system combines information across space. Stimuli were shapes sampled by oriented Gabor patches: circles and high-amplitude RF4 and RF8 radial frequency patterns with Gabor orientations tangential to the shape. Subjects had to detect a deviation in orientation of one element (“heterogeneity”). Heterogeneity detection sensitivity was measured for a range (7–40) of equally spaced (2.3–0.4°) elements. In a second condition, performance was measured when elements sampled a part of the shapes. We either varied partial contour length for a fixed (7) set-size, co-varying inter-element spacing, or set-size for a fixed spacing (0.7°), co-varying partial contour length. Surprisingly, set-size effects (poorer performance with more elements) are rarely seen. Set-size effects only occur for shapes containing concavities (RF4 and RF8) and when spacing is fixed. When elements are regularly spaced, detection performance improves with set-size for all shapes. When set-size is fixed and spacing varied, performance improves with decreasing spacing. Thus, when an increase in set-size and a decrease in spacing co-occur, the effect of spacing dominates, suggesting that inter-element spacing, not set-size, is the critical parameter for sampled shapes. We propose a model for the processing of simple shapes based on V4 curvature units with late noise, incorporating spacing, average shape curvature, and the number of segments with constant sign of curvature contained in the shape, which accurately accounts for our experimental results, making testable predictions for a variety of simple shapes
An inverse oblique effect in human vision
AbstractIn the classic oblique effect contrast detection thresholds, orientation discrimination thresholds, and other psychophysical measures are found to be smallest for vertical or horizontal stimuli and significantly higher for stimuli near the ±45° obliques. Here we report a novel inverse oblique effect in which thresholds for detecting translational structure in random dot patterns [Glass, L. (1969). Moiré effect from random dots. Nature, 223, 578–580] are lowest for obliquely oriented structure and higher for either horizontal or vertical structure. Area summation experiments provide evidence that this results from larger pooling areas for oblique orientations in these patterns. The results can be explained quantitatively by a model for complex cells in which the final filtering stage in a filter–rectify–filter sequence is of significantly larger area for oblique orientations
- …