1,979 research outputs found

    Coherent Modulation of the YBa2Cu3O6+x Atomic Structure by Displacive Stimulated Ionic Raman Scattering

    Full text link
    We discuss the mechanism of coherent phonon generation by Stimulated Ionic Raman Scattering, a process different from conventional excitation with near visible optical pulses. Ionic Raman scattering is driven by anharmonic coupling between a directly excited infrared-active phonon mode and other Raman modes. We experimentally study the response of YBa2Cu3O6+x to the resonant excitation of apical oxygen motions at 20 THz by mid-infrared pulses, which has been shown in the past to enhance the interlayer superconducting coupling. We find coherent oscillations of four totally symmetric (Ag) Raman modes and make a critical assessment of the role of these oscillatory motions in the enhancement of superconductivity.Comment: 12 pages, 4 figure

    Preparation of ordered states in ultra–cold gases using Bayesian optimization

    Get PDF
    Ultra-cold atomic gases are unique in terms of the degree of controllability, both for internal and external degrees of freedom. This makes it possible to use them for the study of complex quantum many-body phenomena. However in many scenarios, the prerequisite condition of faithfully preparing a desired quantum state despite decoherence and system imperfections is not always adequately met. To path the way to a specific target state, we explore quantum optimal control framework based on Bayesian optimization. The probabilistic modeling and broad exploration aspects of Bayesian optimization is particularly suitable for quantum experiments where data acquisition can be expensive. Using numerical simulations for the superfluid to Mott- insulator transition for bosons in a lattice as well for the formation of Rydberg crystals as explicit examples, we demonstrate that Bayesian optimization is capable of finding better control solutions with regards to finite and noisy data compared to existing methods of optimal control

    Image Processing for Cartographic Applications

    Get PDF
    The goal of classifying objects of cartographic interest in aerial photographs was approached using techniques from pattern recognition and image processing. Bridge and airport images were chosen as the initial objects of interest and segments of photographs containing them were digitized for the data base. Edge-detection and Hough transform algorithms identified structures as candidate bridges; additional decision logic (using global contrast and other attributes) further reduced the set. Results indicate the feasibility and low computational cost of the approach

    Rockslide deformation monitoring with fiber optic strain sensors

    Get PDF
    With micro-strain resolution and the capability to sample at rates of 100 Hz and higher, fiber optic (FO) strain sensors offer exciting new possibilities for in-situ landslide monitoring. Here we describe a new FO monitoring system based on long-gauge fiber Bragg grating sensors installed at the Randa Rockslide Laboratory in southern Switzerland. The new FO monitoring system can detect sub-micrometer scale deformations in both triggered-dynamic and continuous measurements. Two types of sensors have been installed: (1) fully embedded borehole sensors and (2) surface extensometers. Dynamic measurements are triggered by sensor deformation and recorded at 100 Hz, while continuous data are logged every 5 min. Deformation time series for all sensors show displacements consistent with previous monitoring. Accelerated shortening following installation of the borehole sensors is likely related to long-term shrinkage of the grout. A number of transient signals have been observed, which in some cases were large enough to trigger rapid sampling. The combination of short- and long-term observation offers new insight into the deformation process. Accelerated surface crack opening in spring is shown to have a diurnal trend, which we attribute to the effect of snowmelt seeping into the crack void space and freezing at night to generate pressure on the crack walls. Controlled-source tests investigated the sensor response to dynamic inputs, which compared an independent measure of ground motion against the strain measured across a surface crack. Low frequency signals were comparable but the FO record suffered from aliasing, where undersampling of higher frequency signals generated spectral peaks not related to ground motion

    Dynamical decoherence of the light induced interlayer coupling in YBa2_{2}Cu3_{3}O6+δ_{6+\delta}

    Full text link
    Optical excitation of apical oxygen vibrations in YBa2_{2}Cu3_{3}O6+δ_{6+\delta} has been shown to enhance its c-axis superconducting-phase rigidity, as evidenced by a transient blue shift of the equilibrium inter-bilayer Josephson plasma resonance. Surprisingly, a transient c-axis plasma mode could also be induced above Tc_{c} by the same apical oxygen excitation, suggesting light activated superfluid tunneling throughout the pseudogap phase of YBa2_{2}Cu3_{3}O6+δ_{6+\delta}. However, despite the similarities between the above Tc_{c} transient plasma mode and the equilibrium Josephson plasmon, alternative explanations involving high mobility quasiparticle transport should be considered. Here, we report an extensive study of the relaxation of the light-induced plasmon into the equilibrium incoherent phase. These new experiments allow for a critical assessment of the nature of this mode. We determine that the transient plasma relaxes through a collapse of its coherence length rather than its carrier (or superfluid) density. These observations are not easily reconciled with quasiparticle interlayer transport, and rather support transient superfluid tunneling as the origin of the light-induced interlayer coupling in YBa2_{2}Cu3_{3}O6+δ_{6+\delta}.Comment: 27 pages (17 pages main text, 10 pages supplementary), 5 figures (main text

    Superconducting Superstructure for the TESLA Collider

    Get PDF
    We discuss the new layout of a cavity chain (superstructure) allowing, we hope, significant cost reduction of the RF system of both linacs of the TESLA linear collider. The proposed scheme increases the fill factor and thus makes an effective gradient of an accelerator higher. We present mainly computations we have performed up to now and which encouraged us to order the copper model of the scheme, still keeping in mind that experiments with a beam will be necessary to prove if the proposed solution can be used for the acceleration.Comment: 11 page

    TCR-engineered T cells: a model of inducible TCR expression to dissect the interrelationship between two TCRs

    Get PDF
    TCR gene-modified T cells for adoptive therapy simultaneously express the transgenic (tg) TCR and the endogenous TCR which might lead to mispaired TCRs with harmful unknown specificity and to a reduced function of TCR-tg T cells. We generated dual TCR T cells in two settings in which either TCR was constitutively expressed by a retroviral promoter while the second TCR expression was regulable by a tet-on system. Constitutively expressed TCR molecules were reduced on the cell surface depending on the induced TCR expression leading to strongly hampered function. Besides that, using fluorescence resonance energy transfer (FRET) we detected mispaired TCR dimers and different pairing behaviors of individual TCR chains with a mutual influence on TCR chain expression. The loss of function and mispairing could not be avoided by changing the TCR expression level or by introduction of an additional cysteine bridge. However, in polyclonal T cells, optimized TCR formats (cysteineization, codon optimization) enhanced correct pairing and function. We conclude from our data that (i) the level of mispairing depends on the individual TCRs and is not reduced by increasing the level of one TCR, and (ii) modifications (cysteineization, codon optimization) improve correct pairing but do not completely exclude mispairing (cysteineization)
    • …
    corecore