6 research outputs found

    Selective targeting of neuroblastoma tumour-initiating cells by compounds identified in stem cell-based small molecule screens

    Get PDF
    Neuroblastoma (NB) is the most deadly extra-cranial solid tumour in children necessitating an urgent need for effective and less toxic treatments. One reason for the lack of efficacious treatments may be the inability of existing drugs to target the tumour-initiating or cancer stem cell population responsible for sustaining tumour growth, metastases and relapse. Here, we describe a strategy to identify compounds that selectively target patient-derived cancer stem cell-like tumour-initiating cells (TICs) while sparing normal paediatric stem cells (skin-derived precursors, SKPs) and characterize two therapeutic candidates. DECA-14 and rapamycin were identified as NB TIC-selective agents. Both compounds induced TIC death at nanomolar concentrations in vitro, significantly reduced NB xenograft tumour weight in vivo, and dramatically decreased self-renewal or tumour-initiation capacity in treated tumours. These results demonstrate that differential drug sensitivities between TICs and normal paediatric stem cells can be exploited to identify novel, patient-specific and potentially less toxic therapies

    HIF-2 alpha maintains an undifferentiated state in neural crest-like human neuroblastoma tumor-initiating cells

    No full text
    High hypoxia-inducible factor-2 alpha (HIF-2 alpha) protein levels predict poor outcome in neuroblastoma, and hypoxia dedifferentiates cultured neuroblastoma cells toward a neural crest-like phenotype. Here, we identify HIF-2 alpha as a marker of normoxic neural crest-like neuroblastoma tumor-initiating/stem cells (TICs) isolated from patient bone marrows. Knockdown of HIF-2 alpha reduced VEGF expression and induced partial sympathetic neuronal differentiation when these TICs were grown in vitro under stem cell-promoting conditions. Xenograft tumors of HIF-2 alpha-silenced cells were widely necrotic, poorly vascularized, and resembled the bulk of tumor cells in clinical neuroblastomas by expressing additional sympathetic neuronal markers, whereas control tumors were immature, well-vascularized, and stroma-rich. Thus, HIF-2 alpha maintains an undifferentiated state of neuroblastoma TICs. Because low differentiation is associated with poor outcome and angiogenesis is crucial for tumor growth, HIF-2 alpha is an attractive target for neuroblastoma therapy

    Expression of multiple endocrine neoplasia 2B RET in neuroblastoma cells alters cell adhesion in Vitro, enhances metastatic behavior in Vivo, and activates Jun kinase

    No full text
    Point mutations, deletions, and recombinations of the RET proto-oncogene are associated with several inherited human diseases of neural crest-derived cells: Hirschsprung's disease, familial medullary thyroid carcinoma, and the multiple endocrine neoplasia (MEN) syndromes, types 2A and 2B, RET expression is restricted to normal and malignant cells of neural crest origin, such as human neuroblastoma cells. To better understand the role of the activated RET oncogene in neural crest cells, we transfected two adherent human neuroblastoma tumor cell lines with oncogenic MEN2 and RET cDNAs. Transfectant clones from both cell lines overexpressing MEN2B RET demonstrated a marked increase in the cell fraction growing in suspension. Both control and MEN2B cells formed tumors at the site of the injection in all cases. However, mice injected with MEN2B cells developed lung metastases at a much higher frequency than control mice. Only RET protein derived from MEN2A transfectant cells had increased autokinase activity, whereas MEN2B transfectant cells demonstrated selective activation of the mitogen-activated protein kinase, Jun kinase-1 (Jnk1). These results indicate a biochemical signaling pathway that may link oncogenic RET with the metastatic process

    System-level analysis of neuroblastoma tumor-initiating cells implicates AURKB as a novel drug target for neuroblastoma

    No full text
    Purpose: Neuroblastoma (NB) is an aggressive tumor of the developing peripheral nervous system that remains difficult to cure in the advanced stages. The poor prognosis for high-risk NB patients is associated with common disease recurrences that fail to respond to available therapies. NB tumor-initiating cells (TICs), isolated from metastases and primary tumors, may escape treatment and contribute to tumor relapse. New therapies that target the TICs may therefore prevent or treat tumor recurrences. Experimental Design: We undertook a system-level characterization of NB TICs to identify potential drug targets against recurrent NB. We used next-generation RNA sequencing and/or human exon arrays to profile the transcriptomes of 11 NB TIC lines from six NB patients, revealing genes that are highly expressed in the TICs compared with normal neural crest-like cells and unrelated cancer tissues. We used gel-free two-dimensional liquid chromatography coupled to shotgun tandem mass spectrometry to confirm the presence of proteins corresponding to the most abundant TIC-enriched transcripts, thereby providing validation to the gene expression result. Results: Our study revealed that genes in the BRCA1 signaling pathway are frequently misexpressed in NB TICs and implicated Aurora B kinase as a potential drug target for NB therapy. Treatment with a selective AURKB inhibitor was cytotoxic to NB TICs but not to the normal neural crest-like cells. Conclusion: This work provides the first high-resolution system-level analysis of the transcriptomes of 11 primary human NB TICs and identifies a set of candidate NB TIC-enriched transcripts for further development as therapeutic targets. ©2010 AACR
    corecore