3,517 research outputs found

    Handbook of cryogenic data in graphic form

    Get PDF
    Handbook of Cryogenic Data is written in graphic form and concentrates extensive data on common materials of construction and properties of fluids frequently encountered in designing cryogenic systems. All data are presented in the British system of units

    Study made of pneumatic high pressure piping materials /10,000 psi/

    Get PDF
    Evaluations of five types of steel for use in high pressure pneumatic piping systems include tests for impact strength, tensile and yield strengths, elongation and reduction in area, field weldability, and cost. One type, AISI 4615, was selected as most advantageous for extensive use in future flight vehicles

    Cosmic Variance In the Transparency of the Intergalactic Medium After Reionization

    Full text link
    Following the completion of cosmic reionization, the mean-free-path of ionizing photons was set by a population of Ly-limit absorbers. As the mean-free-path steadily grew, the intensity of the ionizing background also grew, thus lowering the residual neutral fraction of hydrogen in ionization equilibrium throughout the diffuse intergalactic medium (IGM). Ly-alpha photons provide a sensitive probe for tracing the distribution of this residual hydrogen at the end of reionization. Here we calculate the cosmic variance among different lines-of-sight in the distribution of the mean Ly-alpha optical depths. We find fractional variations in the effective post-reionization optical depth that are of order unity on a scale of ~100 co-moving Mpc, in agreement with observations towards high-redshift quasars. Significant contributions to these variations are provided by the cosmic variance in the density contrast on the scale of the mean-free-path for ionizing photons, and by fluctuations in the ionizing background induced by delayed or enhanced structure formation. Cosmic variance results in a highly asymmetric distribution of transmission through the IGM, with fractional fluctuations in Ly-alpha transmission that ar larger than in Ly-beta transmission.Comment: 7 pages 3 figures. Replaced with version accepted for publication in Ap

    Self-Regulated Growth of Supermassive Black Holes in Galaxies as the Origin of the Optical and X-ray Luminosity Functions of Quasars

    Full text link
    We postulate that supermassive black-holes grow in the centers of galaxies until they unbind the galactic gas that feeds them. We show that the corresponding self-regulation condition yields a correlation between black-hole mass (Mbh) and galaxy velocity dispersion (sigma) as inferred in the local universe, and recovers the observed optical and X-ray luminosity functions of quasars at redshifts up to z~6 based on the hierarchical evolution of galaxy halos in a Lambda-CDM cosmology. With only one free parameter and a simple algorithm, our model yields the observed evolution in the number density of optically bright or X-ray faint quasars between 2<z<6 across 3 orders of magnitude in bolometric luminosity and 3 orders of magnitude in comoving density per logarithm of luminosity. The self-regulation condition identifies the dynamical time of galactic disks during the epoch of peak quasar activity (z~2.5) as the origin of the inferred characteristic quasar lifetime of ~10 million years. Since the lifetime becomes comparable to the Salpeter e-folding time at this epoch, the model also implies that the Mbh-sigma relation is a product of feedback regulated accretion during the peak of quasar activity. The mass-density in black-holes accreted by that time is consistent with the local black-hole mass density of ~(0.8-6.3) times 10^5 solar masses per cubic Mpc, which we have computed by combining the Mbh-sigma relation with the measured velocity dispersion function of SDSS galaxies (Sheth et al.~2003). Applying a similar self-regulation principle to supernova-driven winds from starbursts, we find that the ratio between the black hole mass and the stellar mass of galactic spheroids increases with redshift as (1+z)^1.5 although the Mbh-sigma relation is redshift-independent.Comment: 10 pages, 5 figures, submitted to Ap

    Moving boundary approximation for curved streamer ionization fronts: Solvability analysis

    Get PDF
    The minimal density model for negative streamer ionization fronts is investigated. An earlier moving boundary approximation for this model consisted of a "kinetic undercooling" type boundary condition in a Laplacian growth problem of Hele-Shaw type. Here we derive a curvature correction to the moving boundary approximation that resembles surface tension. The calculation is based on solvability analysis with unconventional features, namely, there are three relevant zero modes of the adjoint operator, one of them diverging; furthermore, the inner/outer matching ahead of the front has to be performed on a line rather than on an extended region; and the whole calculation can be performed analytically. The analysis reveals a relation between the fields ahead and behind a slowly evolving curved front, the curvature and the generated conductivity. This relation forces us to give up the ideal conductivity approximation, and we suggest to replace it by a constant conductivity approximation. This implies that the electric potential in the streamer interior is no longer constant but solves a Laplace equation; this leads to a Muskat-type problem.Comment: 22 pages, 6 figure

    Probing the Mass Fraction of MACHOs in Extragalactic Halos

    Get PDF
    Current microlensing searches calibrate the mass fraction of the Milky Way halo which is in the form of Massive Compact Halo Objects (MACHOs). We show that surveys like the Sloan Digital Sky Survey (SDSS) can probe the same quantity in halos of distant galaxies. Microlensing of background quasars by MACHOs in intervening galaxies would distort the equivalent width distribution of the quasar emission lines by an amplitude that depends on the projected quasar-galaxy separation. For a statistical sample of detectable at the >2sigma level out to a quasar-galaxy impact parameter of several tens of kpc, as long as extragalactic halos are made of MACHOs. Detection of this signal would test whether the MACHO fraction inferred for the Milky-Way halo is typical of other galaxies.Comment: 12 pages, 2 figures, submitted to ApJ Letter

    Formation of the First Supermassive Black Holes

    Full text link
    We consider the physical conditions under which supermassive black holes could have formed inside the first galaxies. Our SPH simulations indicate that metal-free galaxies with a virial temperature ~10^4 K and with suppressed H2 formation (due to an intergalactic UV background) tend to form a binary black hole system which contains a substantial fraction (>10%) of the total baryonic mass of the host galaxy. Fragmentation into stars is suppressed without substantial H2 cooling. Our simulations follow the condensation of ~5x10^6 M_sun around the two centers of the binary down to a scale of < 0.1pc. Low-spin galaxies form a single black hole instead. These early black holes lead to quasar activity before the epoch of reionization. Primordial black hole binaries lead to the emission of gravitational radiation at redshifts z>10 that would be detectable by LISA.Comment: 11 pages, 9 figures, revised version, ApJ in press (October 10, 2003

    X-Ray Absorption by the Hot Intergalactic Medium

    Get PDF
    The current census of observed baryons in the local Universe is still missing a significant fraction of them according to standard Big-Bang nucleosynthesis. Numerical simulations predict that most of the missing baryons are in a hot intergalactic medium, which is difficult to observe through its X-ray emission or Sunyaev-Zel'dovich effect. We show that the next generation of X-ray satellites will be able to detect this gas through the X-ray absorption lines imprinted by its highly-ionized metals on the spectrum of a background quasar. For the metallicity typically found in intracluster gas, up to 70% of the baryons produce O VIII absorption lines with an equivalent width >0.1eV. The spectrum of any high redshift quasar is expected to show several such lines per unit redshift due to intervening gaseous halos of galaxy groups. These lines will be detectable at a signal-to-noise ratio >5 after a day of integration with the future Constellation-X telescope for any of the several hundred brightest quasars across the sky.Comment: 9 pages, 2 figures, submitted to ApJ

    Expected Number and Flux Distribution of Gamma-Ray-Burst Afterglows with High Redshifts

    Full text link
    If Gamma-Ray-Bursts (GRBs) occur at high redshifts, then their bright afterglow emission can be used to probe the ionization and metal enrichment histories of the intervening intergalactic medium during the epoch of reionization. In contrast to other sources, such as galaxies or quasars, which fade rapidly with increasing redshift, the observed infrared flux from a GRB afterglow at a fixed observed age is only a weak function of its redshift. This results from a combination of the spectral slope of GRB afterglows and the time-stretching of their evolution in the observer's frame. Assuming that the GRB rate is proportional to the star formation rate and that the characteristic energy output of GRBs is ~10^{52} ergs, we predict that there are always ~15 GRBs from redshifts z>5 across the sky which are brighter than ~100 nJy at an observed wavelength of ~2 \mu m. The infrared spectrum of these sources could be taken with the future Next Generation Space Telescope, as a follow-up on their early X-ray localization with the Swift satellite.Comment: 29 pages, 14 figures; submitted to Ap

    Large scale distribution of total mass versus luminous matter from Baryon Acoustic Oscillations: First search in the SDSS-III BOSS Data Release 10

    Get PDF
    Baryon Acoustic Oscillations (BAOs) in the early Universe are predicted to leave an as yet undetected signature on the relative clustering of total mass versus luminous matter. A detection of this effect would provide an important confirmation of the standard cosmological paradigm and constrain alternatives to dark matter as well as non-standard fluctuations such as Compensated Isocurvature Perturbations (CIPs). We conduct the first observational search for this effect, by comparing the number-weighted and luminosity-weighted correlation functions, using the SDSS-III BOSS Data Release 10 CMASS sample. When including CIPs in our model, we formally obtain evidence at 3.2σ3.2\sigma of the relative clustering signature and a limit that matches the existing upper limits on the amplitude of CIPs. However, various tests suggest that these results are not yet robust, perhaps due to systematic biases in the data. The method developed in this Letter, used with more accurate future data such as that from DESI, is likely to confirm or disprove our preliminary evidence.Comment: 6 pages, 2 figures, accepted for publication in PR
    corecore