50 research outputs found

    Mechanisms of Human Innate Immune Evasion by Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is an intracellular protozoan parasite of global importance that can remarkably infect, survive, and replicate in nearly all mammalian cells. Notably, 110 years after its discovery, Toxoplasmosis is still a neglected parasitic infection. Although most human infections with T. gondii are mild or asymptomatic, T. gondii infection can result in life-threatening disease in immunocompromised individuals and in the developing fetus due to congenital infection, underscoring the role of the host immune system in controlling the parasite. Recent evidence indicates that T. gondii elicits a robust innate immune response during infection. Interestingly, however, T. gondii has evolved strategies to successfully bypass or manipulate the immune system and establish a life-long infection in infected hosts. In particular, T. gondii manipulates host immunity through the control of host gene transcription and dysregulation of signaling pathways that result in modulation of cell adhesion and migration, secretion of immunoregulatory cytokines, production of microbicidal molecules, and apoptosis. Many of these host-pathogen interactions are governed by parasite effector proteins secreted from the apical secretory organelles, including the rhoptries and dense granules. Here, we review recent findings on mechanisms by which T. gondii evades host innate immunity, with a focus on parasite evasion of the human innate immune system

    The Cytomegalovirus m155 Gene Product Subverts Natural Killer Cell Antiviral Protection by Disruption of H60–NKG2D Interactions

    Get PDF
    Natural killer (NK) cells are an important early mediator of host immunity to murine cytomegalovirus (MCMV) infection. However, MCMV has evolved mechanisms to elude recognition and clearance by NK cells. We have identified an MCMV immune evasion protein that impairs NKG2D-mediated NK cell antiviral activity. Infection of BALB/c 3T3 cells with the Smith strain of MCMV resulted in strong down-regulation of H60, a high affinity ligand for NKG2D, from the surface of virus-infected cells. The MCMV m155 protein specifically down-regulated H60 without affecting expression of the other known NKG2D ligands, RAE-1 and MULT-1. Treatment with the proteasome inhibitors lactacystin or epoxomicin reversed m155 down-regulation of H60. An MCMV mutant virus lacking m155 was severely attenuated in BALB/c mice; however, treatment with neutralizing anti-NKG2D monoclonal antibody or with NK-depleting anti-asialo GM1 antisera restored virulence of the mutant virus. Thus, down-regulation of H60 by m155 is a powerful mechanism of inhibiting NKG2D-mediated antiviral function

    Toxoplasma gondii‐infected natural killer cells display a hypermotility phenotype in vivo

    Get PDF
    Toxoplasma gondii is a highly prevalent intracellular protozoan parasite that causes severe disease in congenitally infected or immunocompromised hosts. T. gondii is capable of invading immune cells and it has been suggested that the parasite harnesses the migratory pathways of these cells to spread through the body. Although in vitro evidence suggests that the parasite further enhances its spread by inducing a hypermotility phenotype in parasitized immune cells, in vivo evidence for this phenomenon is scarce. Here we use a physiologically relevant oral model of T. gondii infection, in conjunction with two‐photon laser scanning microscopy, to address this issue. We found that a small proportion of natural killer (NK) cells in mesenteric lymph nodes contained parasites. Compared with uninfected ‘bystander’ NK cells, these infected NK cells showed faster, more directed and more persistent migratory behavior. Consistent with this, infected NK cells showed impaired spreading and clustering of the integrin, LFA‐1, when exposed to plated ligands. Our results provide the first evidence for a hypermigratory phenotype in T. gondii‐infected NK cells in vivo, providing an anatomical context for understanding how the parasite manipulates immune cell motility to spread through the host

    Ly49P recognition of cytomegalovirus-infected cells expressing H2-Dk and CMV-encoded m04 correlates with the NK cell antiviral response

    Get PDF
    Natural killer (NK) cells are crucial in resistance to certain viral infections, but the mechanisms used to recognize infected cells remain largely unknown. Here, we show that the activating Ly49P receptor recognizes cells infected with mouse cytomegalovirus (MCMV) by a process that requires the presence of H2-Dk and the MCMV m04 protein. Using H2 chimeras between H2-Db and -Dk, we demonstrate that the H2-Dk peptide-binding platform is required for Ly49P recognition. We identified m04 as a viral component necessary for recognition using a panel of MCMV-deletion mutant viruses and complementation of m04-deletion mutant (Δm04) virus infection. MA/My mice, which express Ly49P and H2-Dk, are resistant to MCMV; however, infection with Δm04 MCMV abrogates resistance. Depletion of NK cells in MA/My mice abrogates their resistance to wild-type MCMV infection, but does not significantly affect viral titers in mice infected with Δm04 virus, implicating NK cells in host protection through m04-dependent recognition. These findings reveal a novel mechanism of major histocompatability complex class I–restricted recognition of virally infected cells by an activating NK cell receptor

    Evasion of Human Neutrophil-Mediated Host Defense during Toxoplasma gondii Infection

    No full text
    Neutrophils are a major player in host immunity to infection; however, the mechanisms by which human neutrophils respond to the intracellular protozoan parasite Toxoplasma gondii are still poorly understood. In the current study, we found that, whereas primary human monocytes produced interleukin-1beta (IL-1β) in response to T. gondii infection, human neutrophils from the same blood donors did not. Moreover, T. gondii inhibited lipopolysaccharide (LPS)-induced IL-1β synthesis in human peripheral blood neutrophils. IL-1β suppression required active parasite invasion, since heat-killed or mycalolide B-treated parasites did not inhibit IL-1β release. By investigating the mechanisms involved in this process, we found that T. gondii infection of neutrophils treated with LPS resulted in reduced transcript levels of IL-1β and NLRP3 and reduced protein levels of pro-IL-1β, mature IL-1β, and the inflammasome sensor NLRP3. In T. gondii-infected neutrophils stimulated with LPS, the levels of MyD88, TRAF6, IKKα, IKKβ, and phosphorylated IKKα/β were not affected. However, LPS-induced IκBα degradation and p65 phosphorylation were reduced in T. gondii-infected neutrophils, and degradation of IκBα was reversed by treatment with the proteasome inhibitor MG-132. Finally, we observed that T. gondii inhibited the cleavage and activity of caspase-1 in human neutrophils. These results indicate that T. gondii suppression of IL-1β involves a two-pronged strategy whereby T. gondii inhibits both NF-κB signaling and activation of the NLRP3 inflammasome. These findings represent a novel mechanism of T. gondii evasion of human neutrophil-mediated host defense by targeting the production of IL-1β.IMPORTANCEToxoplasma gondii is an obligate intracellular parasite that infects approximately one-third of humans worldwide and can invade virtually any nucleated cell in the human body. Although it is well documented that neutrophils infiltrate the site of acute T. gondii infection, there is limited understanding of how human neutrophils respond to T. gondii Neutrophils control infectious pathogens by a variety of mechanisms, including the release of the cytokine IL-1β, a major driver of inflammation during infection. This study reveals that T. gondii is able to inhibit IL-1β production in human neutrophils by impairing the activation of the NF-κB signaling pathway and by inhibiting the inflammasome, the protein complex responsible for IL-1β maturation. This two-pronged strategy of targeting the IL-1β pathway may facilitate the survival and spread of T. gondii during acute infection

    Deficiency in astrocyte CCL2 production reduces neuroimmune control of Toxoplasma gondii infection.

    No full text
    Toxoplasma gondii is an obligate intracellular parasite that infects one-third of the world's human population and establishes infection in the brain. Cerebral immune cell infiltration is critical for controlling the parasite, but little is known about the molecular cues guiding immune cells to the brain during infection. Activated astrocytes produce CCL2, a chemokine that mediates inflammatory monocyte recruitment to tissues by binding to the CCR2 receptor. We detected elevated CCL2 production in the brains of C57BL/6J mice by 15 days after T. gondii infection. Utilizing confocal microscopy and intracellular flow cytometry, we identified microglia and brain-infiltrating myeloid cells as the main producers of CCL2 during acute infection, and CCL2 was specifically produced in regions of parasite infection in the brain. In contrast, astrocytes became the dominant CCL2 producer during chronic T. gondii infection. To determine the role of astrocyte-derived CCL2 in mobilizing immune cells to the brain and controlling T. gondii infection, we generated GFAP-Cre x CCL2fl/fl mice, in which astrocytes are deficient in CCL2 production. We observed significantly decreased immune cell recruitment and increased parasite burden in the brain during chronic, but not acute, infection of mice deficient in astrocyte CCL2 production, without an effect on peripheral immune responses. To investigate potential mechanisms explaining the reduced control of T. gondii infection, we analyzed key antimicrobial and immune players in host defense against T. gondii and detected a reduction in iNOS+ myeloid cells, and T. gondii-specific CD4+ T cells in the knockout mice. These data uncover a critical role for astrocyte-derived CCL2 in immune cell recruitment and parasite control in the brain during chronic, but not acute, T. gondii infection
    corecore