25 research outputs found

    Pituitary stem cells produce paracrine WNT signals to control the expansion of their descendant progenitor cells

    Get PDF
    In response to physiological demand, the pituitary gland generates new hormonesecreting cells from committed progenitor cells throughout life. It remains unclear to what extent pituitary stem cells (PSCs), which uniquely express SOX2, contribute to pituitary growth and renewal. Moreover, neither the signals that drive proliferation nor their sources have been elucidated. We have used genetic approaches in the mouse, showing that the WNT pathway is essential for proliferation of all lineages in the gland. We reveal that SOX2+ stem cells are a key source of WNT ligands. By blocking secretion of WNTs from SOX2+ PSCs in vivo, we demonstrate that proliferation of neighbouring committed progenitor cells declines, demonstrating that progenitor multiplication depends on the paracrine WNT secretion from SOX2+ PSCs. Our results indicate that stem cells can hold additional roles in tissue expansion and homeostasis, acting as paracrine signalling centres to coordinate the proliferation of neighbouring cells

    Abnormal corneal epithelial maintenance in mice heterozygous for the micropinna microphthalmia mutation Mp

    Get PDF
    We investigated the corneal morphology of adult Mp/+ mice, which are heterozygous for the micropinna microphthalmia mutation, and identified several abnormalities, which implied that corneal epithelial maintenance was abnormal. The Mp/+ corneal epithelium was thin, loosely packed and contained goblet cells in older mice. Evidence also suggested that the barrier function was compromised. However, there was no major effect on corneal epithelial cell turnover and mosaic patterns of radial stripes indicated that radial cell movement was normal. Limbal blood vessels formed an abnormally wide limbal vasculature ring, K19-positive cells were distributed more widely than normal and K12 was weakly expressed in the peripheral cornea. This raises the possibilities that the limbal-corneal boundary was poorly defined or the limbus was wider than normal. BrdU label-retaining cell numbers and quantitative clonal analysis suggested that limbal epithelial stem cell numbers were not depleted and might be higher than normal. However, as corneal epithelial homeostasis was abnormal, it is possible that Mp/+ stem cell function was impaired. It has been shown recently that the Mp mutation involves a chromosome 18 inversion that disrupts the Fbn2 and Isoc1 genes and produces an abnormal, truncated fibrillin-2(MP) protein. This abnormal protein accumulates in the endoplasmic reticulum (ER) of cells that normally express Fbn2 and causes ER stress. It was also shown that Fbn2 is expressed in the corneal stroma but not the corneal epithelium, suggesting that the presence of truncated fibrillin-2(MP) protein in the corneal stroma disrupts corneal epithelial homeostasis in Mp/+ mice

    Expression Analysis of the Hippo Cascade Indicates a Role in Pituitary Stem Cell Development

    Get PDF
    The pituitary gland is a primary endocrine organ that controls major physiological processes. Abnormal development or homeostatic disruptions can lead to human disorders such as hypopituitarism or tumours. Multiple signalling pathways, including WNT, BMP, FGF and SHH regulate pituitary development but the role of the Hippo-YAP1/TAZ cascade is currently unknown. In multiple tissues, the Hippo kinase cascade underlies neoplasias; it influences organ size through the regulation of proliferation and apoptosis, and has roles in determining stem cell potential. We have used a sensitive mRNA in situ hybridisation method (RNAscope) to determine the expression patterns of the Hippo pathway components during mouse pituitary development. We have also carried out immunolocalisation studies to determine when YAP1 and TAZ, the transcriptional effectors of the Hippo pathway, are active. We find that YAP1/TAZ are active in the stem/progenitor cell population throughout development and at postnatal stages, consistent with their role in promoting the stem cell state. Our results demonstrate for the first time the collective expression of major components of the Hippo pathway during normal embryonic and postnatal development of the pituitary gland

    The Fuzzy planar cell polarity protein (FUZ), necessary for primary cilium formation, is essential for pituitary development

    No full text
    The primary cilium is an essential organelle that is important for normal cell signalling during development and homeostasis but its role in pituitary development has not been reported. The primary cilium facilitates signal transduction for multiple pathways, the best-characterised being the SHH pathway, which is known to be necessary for correct pituitary gland development. FUZ is a planar cell polarity (PCP) effector that is essential for normal ciliogenesis, where the primary cilia of Fuz−/−mutants are shorter or non-functional. FUZ is part of a group of proteins required for recruiting retrograde intraflagellar transport proteins to the base of the organelle. Previous work has reported ciliopathy phenotypes in Fuz−/− homozygous null mouse mutants, including neural tube defects, craniofacial abnormalities, and polydactyly, alongside PCP defects including kinked/curly tails and heart defects. Interestingly, the pituitary gland was reported to be missing in Fuz−/− mutants at 14.5 dpc but the mechanisms underlying this phenotype were not investigated. Here, we have analysed the pituitary development of Fuz−/− mutants. Histological analyses reveal that Rathke's pouch (RP) is initially induced normally but is not specified and fails to express LHX3, resulting in hypoplasia and apoptosis. Characterisation of SHH signalling reveals reduced pathway activation in Fuz−/− mutant relative to control embryos, leading to deficient specification of anterior pituitary fate. Analyses of the key developmental signals FGF8 and BMP4, which are influenced by SHH, reveal abnormal patterning in the ventral diencephalon, contributing further to abnormal RP development. Taken together, our analyses suggest that primary cilia are required for normal pituitary specification through SHH signalling.</p

    Homeostatic and tumourigenic activity of SOX2+ pituitary stem cells is controlled by the LATS/YAP/TAZ cascade

    Get PDF
    SOX2 positive pituitary stem cells (PSCs) are specified embryonically and persist throughout life, giving rise to all pituitary endocrine lineages. We have previously shown the activation of the STK/LATS/YAP/TAZ signalling cascade in the developing and postnatal mammalian pituitary. Here, we investigate the function of this pathway during pituitary development and in the regulation of the SOX2 cell compartment. Through loss- and gain-of-function genetic approaches, we reveal that restricting YAP/TAZ activation during development is essential for normal organ size and specification from SOX2+ PSCs. Postnatal deletion of LATS kinases and subsequent upregulation of YAP/TAZ leads to uncontrolled clonal expansion of the SOX2+ PSCs and disruption of their differentiation, causing the formation of non-secreting, aggressive pituitary tumours. In contrast, sustained expression of YAP alone results in expansion of SOX2+ PSCs capable of differentiation and devoid of tumourigenic potential. Our findings identify the LATS/YAP/TAZ signalling cascade as an essential component of PSC regulation in normal pituitary physiology and tumourigenesis

    Hypothalamic sonic hedgehog is required for cell specification and proliferation of LHX3/LHX4 pituitary embryonic precursors

    Get PDF
    Sonic hedgehog (SHH) is an essential morphogenetic signal dictating cell fate decisions in several developing organs in mammals. In vitro data suggest that SHH is required to specify LHX3+/LHX4+ Rathke's pouch (RP) progenitor identity. However, in vivo studies have failed to reveal such a function, supporting instead, a critical role for SHH in promoting proliferation of these RP progenitors and for differentiation of pituitary cell types. Here, we have used a genetic approach to demonstrate that activation of the SHH pathway is necessary to induce LHX3+/LHX4+ RP identity in mouse embryos. First, we show that conditional deletion of Shh in the anterior hypothalamus results in a fully penetrant phenotype characterised by a complete arrest of RP development, with lack of Lhx3/Lhx4 expression in RP epithelium at 9.0 dpc (days post coitum) and total loss of pituitary tissue by 12.5 dpc. Conversely, over-activation of the SHH pathway by conditional deletion of Ptch1 in RP progenitors leads to severe hyperplasia and enlargement of the Sox2+ve stem cell compartment by the end of gestation.</jats:p
    corecore