5,612 research outputs found

    Asset Ownership and Investment Incentives Revisited.

    Get PDF
    Previous work on the property rights theory of the firm suggests that in the presence of outside options, asset ownership may demotivate managers. This paper shows that this conclusion relies on the assumption that a manager's outside option only depends on her own investment.PROPERTY RIGHTS ; MANAGEMENT ; INVESTMENTS

    Book reviews

    Get PDF
    Teaching/Communication/Extension/Profession,

    Magnon squeezing in an antiferromagnet: reducing the spin noise below the standard quantum limit

    Get PDF
    At absolute zero temperature, thermal noise vanishes when a physical system is in its ground state, but quantum noise remains as a fundamental limit to the accuracy of experimental measurements. Such a limitation, however, can be mitigated by the formation of squeezed states. Quantum mechanically, a squeezed state is a time-varying superposition of states for which the noise of a particular observable is reduced below that of the ground state at certain times. Quantum squeezing has been achieved for a variety of systems, including the electromagnetic field, atomic vibrations in solids and molecules, and atomic spins, but not so far for magnetic systems. Here we report on an experimental demonstration of spin wave (i.e., magnon) squeezing. Our method uses femtosecond optical pulses to generate correlations involving pairs of magnons in an antiferromagnetic insulator, MnF2. These correlations lead to quantum squeezing in which the fluctuations of the magnetization of a crystallographic unit cell vary periodically in time and are reduced below that of the ground state quantum noise. The mechanism responsible for this squeezing is stimulated second order Raman scattering by magnon pairs. Such squeezed states have important ramifications in the emerging fields of spintronics and quantum computing involving magnetic spin states or the spin-orbit coupling mechanism

    William D. Neighbors

    Get PDF

    Preface

    Get PDF
    We are proud to present the fourth volume of the Online Edition of the University of Richmond Law Review. In the proud tradition of our publication, we have once again sought to publish timely and relevant scholarship

    Adhering to Professional Obligations: Amending ABA Model Rule of Professional Conduct 1.8(e) to Allow for Humanitarian Loans to Existing Clients

    Get PDF

    Influence of interface potential on the effective mass in Ge nanostructures

    Full text link
    The role of the interface potential on the effective mass of charge carriers is elucidated in this work. We develop a new theoretical formalism using a spatially dependent effective mass that is related to the magnitude of the interface potential. Using this formalism we studied Ge quantum dots (QDs) formed by plasma enhanced chemical vapour deposition (PECVD) and co-sputtering (sputter). These samples allowed us to isolate important consequences arising from differences in the interface potential. We found that for a higher interface potential, as in the case of PECVD QDs, there is a larger reduction in the effective mass, which increases the confinement energy with respect to the sputter sample. We further understood the action of O interface states by comparing our results with Ge QDs grown by molecular beam epitaxy. It is found that the O states can suppress the influence of the interface potential. From our theoretical formalism we determine the length scale over which the interface potential influences the effective mass

    The Band Gap in Silicon Nanocrystallites

    Full text link
    The gap in semiconductor nanocrystallites has been extensively studied both theoretically and experimentally over the last two decades. We have compared a recent ``state-of-the-art'' theoretical calculation with a recent ``state-of-the-art'' experimental observation of the gap in Si nanocrystallite. We find that the two are in substantial disagreement, with the disagreement being more pronounced at smaller sizes. Theoretical calculations appear to over-estimate the gap. Recognizing that the experimental observations are for a distribution of crystallite sizes, we proffer a phenomenological model to reconcile the theory with the experiment. We suggest that similar considerations must dictate comparisons between the theory and experiment vis-a-vis other properties such as radiative rate, decay constant, absorption coefficient, etc.Comment: 5 pages, latex, 2 figures. (Submitted Physical Review B
    • …
    corecore