64 research outputs found

    Assessing the accuracy of intracameral phenylephrine preparation in cataract surgery

    Get PDF
    Purpose: Unpreserved phenylephrine is often used as an off-licence intracameral surgical adjunct during cataract surgery to assist with pupil dilation and/or stabilise the iris in floppy iris syndrome. It can be delivered as a neat 0.2 ml bolus of either 2.5 or 10% strength, or in a range of ad-hoc dilutions. We wished to assess the accuracy of intracameral phenylephrine preparation in clinical practice. Methods: Phenylephrine 0.2 ml was analysed both neat (2.5 and 10%) and in diluted form (ratio of 1:1 and 1:3). Samples were analysed using the validated spectrophotometric method. Results: A total of 36 samples were analysed. The standard curve showed linearity for phenylephrine (R2 = 0.99). Wide variability was observed across all dilution groups. There was evidence of significant differences in the percentage deviations from intended results between dilutions (p < 0.001). Mean percentage deviation for 1:3 dilution was significantly greater than neat (p = 0.003) and 1:1 dilution (p = 0.001). There was no evidence of a significant difference between 1:1 and neat (p = 0.827). Conclusions: Current ad-hoc dilution methods used to prepare intracameral phenylephrine are inaccurate and highly variable. Small volume 1 ml syringes should not be used for mixing or dilution of drug. Commercial intracameral phenylephrine products would address dosage concerns and could improve surgical outcomes in cases of poor pupil dilation and/or floppy iris syndrome

    Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1472-6750/11/103Background: The filamentous fungus Trichoderma reesei (Hypocrea jecorina) is an important source of cellulases for use in the textile and alternative fuel industries. To fully understand the regulation of cellulase production in T. reesei, the role of a gene known to be involved in carbon regulation in Aspergillus nidulans, but unstudied in T. reesei, was investigated. Results: The T. reesei orthologue of the A. nidulans creB gene, designated cre2, was identified and shown to be functional through heterologous complementation of a creB mutation in A. nidulans. A T. reesei strain was constructed using gene disruption techniques that contained a disrupted cre2 gene. This strain, JKTR2-6, exhibited phenotypes similar to the A. nidulans creB mutant strain both in carbon catabolite repressing, and in carbon catabolite derepressing conditions. Importantly, the disruption also led to elevated cellulase levels. Conclusions: These results demonstrate that cre2 is involved in cellulase expression. Since the disruption of cre2 increases the amount of cellulase activity, without severe morphological affects, targeting creB orthologues for disruption in other industrially useful filamentous fungi, such as Aspergillus oryzae, Trichoderma harzianum or Aspergillus niger may also lead to elevated hydrolytic enzyme activity in these species.Jai A Denton and Joan M Kell

    A Deubiquitylating Complex Required for Neosynthesis of a Yeast Mitochondrial ATP Synthase Subunit

    Get PDF
    The ubiquitin system is known to be involved in maintaining the integrity of mitochondria, but little is known about the role of deubiquitylating (DUB) enzymes in such functions. Budding yeast cells deleted for UBP13 and its close homolog UBP9 displayed a high incidence of petite colonies and slow respiratory growth at 37°C. Both Ubp9 and Ubp13 interacted directly with Duf1 (DUB-associated factor 1), a WD40 motif-containing protein. Duf1 activates the DUB activity of recombinant Ubp9 and Ubp13 in vitro and deletion of DUF1 resulted in the same respiratory phenotype as the deletion of both UBP9 and UBP13. We show that the mitochondrial defects of these mutants resulted from a strong decrease at 37°C in the de novo biosynthesis of Atp9, a membrane-bound component of ATP synthase encoded by mitochondrial DNA. The defect appears at the level of ATP9 mRNA translation, while its maturation remained unchanged in the mutants. This study describes a new role of the ubiquitin system in mitochondrial biogenesis

    In vivo Hypoxia and a Fungal Alcohol Dehydrogenase Influence the Pathogenesis of Invasive Pulmonary Aspergillosis

    Get PDF
    Currently, our knowledge of how pathogenic fungi grow in mammalian host environments is limited. Using a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA) and 1H-NMR metabolomics, we detected ethanol in the lungs of mice infected with Aspergillus fumigatus. This result suggests that A. fumigatus is exposed to oxygen depleted microenvironments during infection. To test this hypothesis, we utilized a chemical hypoxia detection agent, pimonidazole hydrochloride, in three immunologically distinct murine models of IPA (chemotherapeutic, X-CGD, and corticosteroid). In all three IPA murine models, hypoxia was observed during the course of infection. We next tested the hypothesis that production of ethanol in vivo by the fungus is involved in hypoxia adaptation and fungal pathogenesis. Ethanol deficient A. fumigatus strains showed no growth defects in hypoxia and were able to cause wild type levels of mortality in all 3 murine models. However, lung immunohistopathology and flow cytometry analyses revealed an increase in the inflammatory response in mice infected with an alcohol dehydrogenase null mutant strain that corresponded with a reduction in fungal burden. Consequently, in this study we present the first in vivo observations that hypoxic microenvironments occur during a pulmonary invasive fungal infection and observe that a fungal alcohol dehydrogenase influences fungal pathogenesis in the lung. Thus, environmental conditions encountered by invading pathogenic fungi may result in substantial fungal metabolism changes that influence subsequent host immune responses

    Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei

    Full text link
    • …
    corecore