30 research outputs found

    Sleep Apnea and Fetal Growth Restriction (SAFER) study: Protocol for a pragmatic randomised clinical trial of positive airway pressure as an antenatal therapy for fetal growth restriction in maternal obstructive sleep apnoea

    Get PDF
    INTRODUCTION: Fetal growth restriction (FGR) is a major contributor to fetal and neonatal morbidity and mortality with intrauterine, neonatal and lifelong complications. This study explores maternal obstructive sleep apnoea (OSA) as a potentially modifiable risk factor for FGR. We hypothesise that, in pregnancies complicated by FGR, treating mothers who have OSA using positive airway pressure (PAP) will improve birth weight and neonatal outcomes. METHODS AND ANALYSIS: The Sleep Apnea and Fetal Growth Restriction study is a prospective, block-randomised, single-blinded, multicentre, pragmatic controlled trial. We enrol pregnant women aged 18-50, between 22 and 31 weeks of gestation, with established FGR based on second trimester ultrasound, who do not have other prespecified known causes of FGR (such as congenital anomalies or intrauterine infection). In stage 1, participants are screened by questionnaire for OSA risk. If OSA risk is identified, participants proceed to stage 2, where they undergo home sleep apnoea testing. Participants are determined to have OSA if they have an apnoea-hypopnoea index (AHI) ≥5 (if the oxygen desaturation index (ODI) is also ≥5) or if they have an AHI ≥10 (even if the ODI is \u3c5). These participants proceed to stage 3, where they are randomised to nightly treatment with PAP or no PAP (standard care control), which is maintained until delivery. The primary outcome is unadjusted birth weight; secondary outcomes include fetal growth velocity on ultrasound, enrolment-to-delivery interval, gestational age at delivery, birth weight corrected for gestational age, stillbirth, Apgar score, rate of admission to higher levels of care (neonatal intensive care unit or special care nursery) and length of neonatal stay. These outcomes are compared between PAP and control using intention-to-treat analysis. ETHICS AND DISSEMINATION: This study has been approved by the Institutional Review Boards at Washington University in St Louis, Missouri; Hadassah Hebrew University Medical Center, Jerusalem; and the University of Rochester, New York. Recruitment began in Washington University in November 2019 but stopped from March to November 2020 due to COVID-19. Recruitment began in Hadassah Hebrew University in March 2021, and in the University of Rochester in May 2021. Dissemination plans include presentations at scientific conferences and scientific publications. TRIAL REGISTRATION NUMBER: NCT04084990

    Where Are All the Mycobacterium avium Subspecies paratuberculosis in Patients with Crohn's Disease?

    Get PDF
    Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic granulomatous inflammation of the intestines, Johne's disease, in dairy cows and every other species of mammal in which it has been identified. MAP has been identified in the mucosal layer and deeper bowel wall in patients with Crohn's disease by methods other than light microscopy, and by direct visualization in small numbers by light microscopy. MAP has not been accepted as the cause of Crohn's disease in part because it has not been seen under the microscope in large numbers in the intestines of patients with Crohn's disease. An analysis of the literature on the pathology of Crohn's disease and on possible MAP infection in Crohn's patients suggests that MAP might directly infect endothelial cells and adipocytes and cause them to proliferate, causing focal obstruction within already existing vessels (including granuloma formation), the development of new vessels (neoangiogenesis and lymphangiogenesis), and the “creeping fat” of the mesentery that is unique in human pathology to Crohn's disease but also occurs in bovine Johne's disease. Large numbers of MAP might therefore be found in the mesentery attached to segments of intestine affected by Crohn's disease rather than in the bowel wall, the blood and lymphatic vessels running through the mesentery, or the mesenteric fat itself. The walls of fistulas might result from the neoangiogenesis or lymphangiogenesis that occurs in the bowel wall in Crohn's disease and therefore are also possible sites of large numbers of MAP. The direct visualization of large numbers of MAP organisms in the tissues of patients with Crohn's disease will help establish that MAP causes Crohn's disease

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease

    In Reply

    No full text

    The role of body image psychological flexibility on the treatment of eating disorders in a residential facility

    No full text
    Objective: The purpose of this study was to test whether pre-treatment levels of psychological flexibility would longitudinally predict quality of life and eating disorder risk in patients at a residential treatment facility for eating disorders. Method: Data on body image psychological flexibility, quality of life, and eating disorder risk were collected from 63 adolescent and 50 adult, female, residential patients (N=113) diagnosed with an eating disorder. These same measures were again collected at post-treatment. Sequential multiple regression analyses were performed to test whether pre-treatment levels of psychological flexibility longitudinally predicted quality of life and eating disorder risk after controlling for age and baseline effects. Results: Pre-treatment psychological flexibility significantly predicted post-treatment quality of life with approximately 19% of the variation being attributable to age and pre-treatment psychological flexibility. Pre-treatment psychological flexibility also significantly predicted post-treatment eating disorder risk with nearly 30% of the variation attributed to age and pre-treatment psychological flexibility. Discussion: This study suggests that levels of psychological flexibility upon entering treatment for an eating disorder longitudinally predict eating disorder outcome and quality of life
    corecore