15 research outputs found

    Detection of Brevipalpus-transmitted viruses in their mite vectors by RT-PCR

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)The diagnosis of plant diseases caused by Brevipalpus-transmitted viruses (BrTVs) has been done through the analyses of symptoms, transmission electron microscopy, and RT-PCR of infected plant tissues. Here, we report the detection of Citrus leprosis virus C, Orchid fleck virus, Clerodendrum chlorotic spot virus and Solanum violaefolium ringspot virus in their viruliferous vectors Brevipalpus spp. using specific primer pairs for each of the viruses. The efficiency of virus transmission by Brevipalpus mites is low, so the detection of these pathogens in their vectors could constitute an important tool for studies involving virus-vector relationships, transmission, and monitoring the pathogen prior to the appearance of symptoms in the field.5413339Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)EmbrapaFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Polyclonal antibodies to the putative coat protein of Citrus leprosis virus C expressed in Escherichia coli: Production and use in immunodiagnosis

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)This work reports the in vitro expression of Citrus leprosis virus C (CiLV-C) putative coat protein (p29) and the production of a polyclonal antibody to be used as a tool for serological diagnosis of citrus leprosis. The ORF2/RNA1, corresponding to p29, was cloned in pET28a and transformed into Escherichia coli cells (BL21). Expression of p29 was induced in vitro and the protein was purified and used for immunization of rabbits to produce the polyclonal antibody. The anti p29 serum was shown to be highly specific to CiLV-C detection by immunological methods (Western blot, PTA-ELISA, tissue blot and in situ immunolocalization), without cross reaction with healthy citrus plants or other cytoplasmic and nuclear viruses transmitted by Brevipalpus mites. These results demonstrate that the antibody against CiLV-C p29 protein is highly specific for CiLV-C detection. In situ immunogold labeling assays on thin sections of sweet orange leaf cells infected by CiLV-C demonstrated that short, bacilliform particles present within cisternae of the endoplasmic reticulum were specifically labeled, confirming their viral nature. The dense cytoplasmic viroplasm was also heavily labeled indicating that it represents a site of p29 accumulation.383188197Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)EmbrapaFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [2004/11799-0, 2008/52691-9]CNPq [47.1705/2009-8

    Virus-vector relationship in the Citrus leprosis pathosystem

    No full text
    Citrus leprosis has been one of the most destructive diseases of citrus in the Americas. In the last decade important progress has been achieved such as the complete genome sequencing of its main causal agent, Citrus leprosis virus C (CiLV-C), belonging to a new genus Cilevirus. It is transmitted by Brevipalpus yothersi Baker (Acari: Tenuipalpidae), and is characterized by the localized symptoms it induces on the leaves, fruits and stems. It occurs in the American continents from Mexico to Argentina. The virus was until recently considered restricted to Citrus spp. However, it was found naturally infecting other plants species as Swinglea glutinosa Merrill and Commelina benghalensis L., and has been experimentally transmitted by B. yothersi to a large number of plant species. Despite these advances little is known about the virus-vector relationship that is a key to understanding the epidemiology of the disease. Some components of the CiLV-C/B. yothersi relationship were determined using the common bean (Phaseolus vulgaris L. cv. ‘IAC Una’) as a test plant. They included: (a) the virus acquisition access period was 4 h; (b) the virus inoculation access period was 2 h; (c) the latent period between acquisition and inoculation was 7 h; (d) the period of retention of the virus by a single viruliferous mite was at least 12 days; (d) the percentage of viruliferous individuals from mite colonies on infected tissues ranged from 25 to 60%. The experiments confirmed previous data that all developmental stages of B. yothersi (larva, protonymph and deutonymph, adult female and male) were able to transmit CiLV-C and that transovarial transmission of the virus did not occur. CiLV-C can be acquired from lesions on leaves, fruits and stems by B. yothersi. Based on the distribution of lesions produced by single viruliferous B. yothersi on bean leaves, it is concluded that they tend to feed in restricted areas, usually near the veins. The short latent and transmission periods during the larval stage suggest that the CiLV-C/B. yothersi relationship is of the persistent circulative type.Fundación de apoyo a la investigación estatal/[2014/08458-9]/Fapesp/BrasilConsejo Nacional de desarrollo científico y tecnológico/[47.2425/2013-7]/CNPq/BrasilFundación de apoyo a la investigación estatal/[2008/57477-5]/Fapesp/BrasilFundación de apoyo a la investigación estatal/[2013/25713-0]/Fapesp/BrasilUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM

    Comparison of the genomes of two Xanthomonas pathogens with differing host specificities

    No full text
    The genus Xanthomonas is a diverse and economically important group of bacterial phytopathogens, belonging to the gamma-subdivision of the Proteobacteria. Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, which affects most commercial citrus cultivars, resulting in significant losses worldwide. Symptoms include canker lesions, leading to abscission of fruit and leaves and general tree decline(1). Xanthomonas campestris pv. campestris (Xcc) causes black rot, which affects crucifers such as Brassica and Arabidopsis. Symptoms include marginal leaf chlorosis and darkening of vascular tissue, accompanied by extensive wilting and necrosis(2). Xanthomonas campestris pv. campestris is grown commercially to produce the exopolysaccharide xanthan gum, which is used as a viscosifying and stabilizing agent in many industries(3). Here we report and compare the complete genome sequences of Xac and Xcc. Their distinct disease phenotypes and host ranges belie a high degree of similarity at the genomic level. More than 80% of genes are shared, and gene order is conserved along most of their respective chromosomes. We identified several groups of strain-specific genes, and on the basis of these groups we propose mechanisms that may explain the differing host specificities and pathogenic processes.417688745946
    corecore