4 research outputs found

    Tools for designing the next generation of stellarators

    No full text
    Experience in the construction of optimized stellarators shows the coil system is a significant challenge. The precision necessary allow the generation of accurate flux surfaces in recent experiments affected both cost and schedule negatively. Moreover, recent experiments at Wendelstein 7-X have shown that small field corrections were necessary for the operation of specific desired magnetic configurations. Therefore, robust magnetic configurations in terms of coil geometry and assembly tolerances have a high potential to facilitate swifter and less expensive construction of future, optimized stellarators. We present a new coil optimization technique that is designed to seek out coil configurations that are resilient against 3D coil displacements. This stochastic version of stellarator coil optimization uses the sampling average approach to incorporate an iterative perturbation analysis into the optimization routine. The result is a robust magnetic configuration that simultaneously reproduces the target magnetic field more accurately and leads to a better fusion performing coil configuration.Erfahrungen beim Bau von Stellaratoren zeigen, dass das Spulensystem eine erhebliche Herausforderung ist. Bei der Konstruktion bisheriger Experimente führte die Präzision, welche für ordentliche Flussflächen notwendig war, zu erhöhten Kosten und einer späteren Fertigstellung. Des Weiteren haben aktuelle Experimente an Wendelstein 7-X gezeigt, dass kleine Änderungen am magnetischen Feld notwendig waren um bestimmte Magnetfeldkonfigurationen zu betreiben. Aus diesem Grund haben robuste Magnetfeldkonfigurationen bzgl. der Spulengeometrie und der Montagegenauigkeit das Potenzial den Bau eines optimierten Stellarators zu beschleunigen und die Kosten zu senken. In dieser Doktorarbeit präsentieren wir eine Optimierungstechnik, welche designet wurde die Widerstandsfähigkeit von Spulen gegen 3D Perturbationen zu erhöhen. Diese stochastische Version der Spulenoptimierung integriert eine Perturbationsanalyse in die Optimierungsroutine, in dem sie den Durchschnittswert einer Menge von Stichproben optimiert. Das Resultat ist eine robuste Magnetfeldkonfiguration welche zugleich das Zielmagnetfeld besser reproduziert und so zu einer besseren Fusionsleistung führt

    Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000

    No full text
    Fusion energy research has in the past 40 years focused primarily on the tokamak concept, but recent advances in plasma theory and computational power have led to renewed interest in stellarators. The largest and most sophisticated stellarator in the world, Wendelstein 7-X (W7-X), has just started operation, with the aim to show that the earlier weaknesses of this concept have been addressed successfully, and that the intrinsic advantages of the concept persist, also at plasma parameters approaching those of a future fusion power plant. Here we show the first physics results, obtained before plasma operation: that the carefully tailored topology of nested magnetic surfaces needed for good confinement is realized, and that the measured deviations are smaller than one part in 100,000. This is a significant step forward in stellarator research, since it shows that the complicated and delicate magnetic topology can be created and verified with the required accuracy

    Major results from the first plasma campaign of the Wendelstein 7-X stellarator

    No full text
    \u3cp\u3eAfter completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3 10\u3csup\u3e19\u3c/sup\u3e m\u3csup\u3e-3\u3c/sup\u3e, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.\u3c/p\u3

    Major results from the first plasma campaign of the Wendelstein 7-X stellarator

    No full text
    After completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3 1019 m-3, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.Peer reviewe
    corecore