118 research outputs found

    Human Excretion of Bisphenol A: Blood, Urine, and Sweat (BUS) Study

    Get PDF
    Background. Bisphenol A (BPA) is an ubiquitous chemical contaminant that has recently been associated with adverse effects on human health. There is incomplete understanding of BPA toxicokinetics, and there are no established interventions to eliminate this compound from the human body. Using 20 study participants, this study was designed to assess the relative concentration of BPA in three body fluids—blood, urine, and sweat—and to determine whether induced sweating may be a therapeutic intervention with potential to facilitate elimination of this compound. Methods. Blood, urine, and sweat were collected from 20 individuals (10 healthy participants and 10 participants with assorted health problems) and analyzed for various environmental toxicants including BPA. Results. BPA was found to differing degrees in each of blood, urine, and sweat. In 16 of 20 participants, BPA was identified in sweat, even in some individuals with no BPA detected in their serum or urine samples. Conclusions. Biomonitoring of BPA through blood and/or urine testing may underestimate the total body burden of this potential toxicant. Sweat analysis should be considered as an additional method for monitoring bioaccumulation of BPA in humans. Induced sweating appears to be a potential method for elimination of BPA

    Characterization and Biocompatibility Study of Nematic and Cholesteryl Liquid Crystals.

    Get PDF
    noIntensive research in bio-engineering has been conducted in the search for flexible biomaterials that could support cell growth and cells attachment. Flexible synthetic materials that support cell growth without the aid of synthetic extracellular matrix proteins are still rare. Cholesteryl liquid crystal containing cholesteryl moieties may have suitable biological affinity. Human keratinocytes (HaCat) were cultured with a nematic liquid crystal and three cholesteryl liquid crystals of different formulation. Subsequently, the trypan blue dye exclusion assay was used to determine cell viability in the liquid crystals. The two classes of liquid crystal were characterized by Differential Scanning Calorimeter (DSC) and polarizing microscope (POM) to understand the nature of the interface material. The cell viability study in medium containing liquid crystals verified that liquid crystals had no effects on cell viability. However, only the surface of cholesteryl liquid crystal has shown affinity to HaCat cells. In addition, cells continued to proliferate in the presence of liquid crystals without a change of medium for eight days. No sign of exothermic and endothermic activities at 370C were observed from the DSC test results for the three samples. Biological and mechanical test result of the cholesteryl liquid crystals has shown that cholesteryl liquid crystals are non toxic and support cell attachment without extracellular matrix protein at very low elasticity

    Gluten sensitivity presenting as a neuropsychiatric disorder

    Get PDF
    There has been increasing recognition in the medical community and the general public of the widespread prevalence of gluten sensitivity. Celiac disease (CD) was initially believed to be the sole source of this phenomenon. Signs and symptoms indicative of nonceliac gluten sensitivity (NCGS), in which classical serum and intestinal findings of CD may be absent, have been frequently reported of late. Clinical manifestations in patients with NCGS are characteristically triggered by gluten and are ameliorated or resolved within days to weeks of commencing a gluten-free diet. Emerging scientific literature contains several reports linking gluten sensitivity states with neuropsychiatric manifestations including autism, schizophrenia, and ataxia. A clinical review of gluten sensitivity is presented alongside a case illustrating the life-changing difference achieved by gluten elimination in a patient with a longstanding history of auditory and visual hallucinations. Physicians in clinical practice should routinely consider sensitivity issues as an etiological determinant of otherwise inexplicable symptoms. Pathophysiologic mechanisms to explain the multisystem symptomatology with gluten sensitivity are considered

    Using an acceptance and commitment therapy app to reduce anxiety for students and employees

    Get PDF
    Smartphone applications may ensure greater access to services for the many people who experience anxiety and other psychological issues but do not receive adequate treatment. ACTCompanion® is a mHealth application that incorporates Acceptance and Commitment Therapy principles into daily exercises that assist the user to confront their negative internal experiences and work towards valued outcomes. We used a single-subject A-B design with nine students and 10 employees experiencing high daily anxiety. Participants completed a battery of questionnaires before and after app use. They completed the DAS-A regularly so we could monitor anxiety levels over time. Daily anxiety levels reduced in the intervention phase, and remained low for six participants for whom follow-up data were available. There was also a significant improvement in scores of anxiety, depression, stress, positive and negative effect, psychological flexibility, and mindfulness. Our results suggest that mHealth applications have potential to improve people’s psychological functioning

    Ratio of stemness to interferon signalling as a biomarker and therapeutic target of myeloproliferative neoplasm progression to acute myeloid leukaemia

    Get PDF
    Progression to aggressive secondary acute myeloid leukaemia (sAML) poses a significant challenge in the management of myeloproliferative neoplasms (MPNs). Since the physiopathology of MPN is closely linked to the activation of interferon (IFN) signalling and that AML initiation and aggressiveness is driven by leukaemia stem cells (LSCs), we investigated these pathways in MPN to sAML progression. We found that high IFN signalling correlated with low LSC signalling in MPN and AML samples, while MPN progression and AML transformation were characterized by decreased IFN signalling and increased LSC signature. A high LSC to IFN expression ratio in MPN patients was associated with adverse clinical prognosis and higher colony forming potential. Moreover, treatment with hypomethylating agents (HMAs) activates the IFN signalling pathway in MPN cells by inducing a viral mimicry response. This response is characterized by double-stranded RNA (dsRNA) formation and MDA5/RIG-I activation. The HMA-induced IFN response leads to a reduction in LSC signature, resulting in decreased stemness. These findings reveal the frequent evasion of viral mimicry during MPN-to-sAML progression, establish the LSC-to-IFN expression ratio as a progression biomarker, and suggests that HMAs treatment can lead to haematological response in murine models by re-activating dsRNA-associated IFN signalling

    Case report: Malignant teratoma of the uterine corpus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Teratomas are the commonest germ cell tumours and are most frequently found in the testes and ovary. Extragonadal teratomas are rare and mainly occur in midline structures. Uterine teratomas are extremely rare with only a few previous case reports, usually involving mature teratomas of the uterine cervix.</p> <p>Case Presentation</p> <p>We report an 82-year-old lady presenting with post-menopausal bleeding. Initial investigations revealed a benign teratoma of the uterus which was removed. Her symptoms persisted and a recurrent, now malignant, teratoma of the uterine corpus was resected at hysterectomy. Six months after surgery she relapsed with para-aortic lymphadenopathy and was treated with a taxane, etoposide and cisplatin-containing chemotherapy regimen followed by retroperitoneal lymph node dissection.</p> <p>Conclusion</p> <p>In this report we discuss the aetiology, diagnosis and management of uterine teratomas, and review previous case studies.</p

    Direct detection and measurement of wall shear stress using a filamentous bio-nanoparticle

    Get PDF
    The wall shear stress (WSS) that a moving fluid exerts on a surface affects many processes including those relating to vascular function. WSS plays an important role in normal physiology (e.g. angiogenesis) and affects the microvasculature's primary function of molecular transport. Points of fluctuating WSS show abnormalities in a number of diseases; however, there is no established technique for measuring WSS directly in physiological systems. All current methods rely on estimates obtained from measured velocity gradients in bulk flow data. In this work, we report a nanosensor that can directly measure WSS in microfluidic chambers with sub-micron spatial resolution by using a specific type of virus, the bacteriophage M13, which has been fluorescently labeled and anchored to a surface. It is demonstrated that the nanosensor can be calibrated and adapted for biological tissue, revealing WSS in micro-domains of cells that cannot be calculated accurately from bulk flow measurements. This method lends itself to a platform applicable to many applications in biology and microfluidics

    Breast epithelial cell proliferation is markedly increased with short-term high levels of endogenous estrogen secondary to controlled ovarian hyperstimulation

    Get PDF
    Oocyte donors have high serum estradiol (E2) levels similar to the serum levels seen in the first trimester of pregnancy. We report in this article our studies comparing cell proliferation, Ki67 (MIB1), and estrogen and progesterone receptor levels (ERα, PRA, and PRB) in the breast terminal duct lobular units of oocyte donors, women in early pregnancy, and in normally cycling women. Breast tissue and blood samples were obtained from 10 oocyte donors, and 30 pregnant women at 5–18 weeks of gestation. Breast tissue samples were also obtained from 26 normally cycling women. In the oocyte donors: peak E2 (mean ~15,300 pmol/l) was reached on the day before oocyte (and tissue) donation; peak progesterone (P4; mean 36.3 nmol/l) was reached on the day of donation; Ki67 was positively associated with level of E2, and the mean Ki67 was 7.0% significantly greater than the mean 1.8% of cycling women. In the pregnant women: mean E2 rose from ~2,000 pmol/l at 5 weeks of gestation to ~27,000 pmol/l at 18 weeks; mean P4 did not change from ~40 nmol/l until around gestational week 11 when it increased to ~80 nmol/l; mean Ki67 was 15.4% and did not vary with gestational age or E2. Oocyte donors have greatly increased levels of E2 and of breast-cell proliferation, both comparable in the majority of donors to the levels seen in the first trimester of pregnancy. Whether their short durations of greatly increased E2 levels are associated with any long-term beneficial effects on the breast, as occurring in rodent models, is not known
    corecore