656 research outputs found

    Mutual Inductance Route to Paramagnetic Meissner Effect in 2D Josephson Junction Arrays

    Full text link
    We simulate two-dimensional Josephson junction arrays, including full mutual- inductance effects, as they are cooled below the transition temperature in a magnetic field. We show numerical simulations of the array magnetization as a function of position, as detected by a scanning SQUID which is placed at a fixed height above the array. The calculated magnetization images show striking agreement with the experimental images obtained by A. Nielsen et al. The average array magnetization is found to be paramagnetic for many values of the applied field, confirming that paramagnetism can arise from magnetic screening in multiply-connected superconductors without the presence of d-wave superconductivity.Comment: REVTeX 3.1, 5 pages, 5 figure

    Resistive flow in a weakly interacting Bose-Einstein condensate

    Get PDF
    We report the direct observation of resistive flow through a weak link in a weakly interacting atomic Bose-Einstein condensate. Two weak links separate our ring-shaped superfluid atomtronic circuit into two distinct regions, a source and a drain. Motion of these weak links allows for creation of controlled flow between the source and the drain. At a critical value of the weak link velocity, we observe a transition from superfluid flow to superfluid plus resistive flow. Working in the hydrodynamic limit, we observe a conductivity that is 4 orders of magnitude larger than previously reported conductivities for a Bose-Einstein condensate with a tunnel junction. Good agreement with zero-temperature Gross-Pitaevskii simulations and a phenomenological model based on phase slips indicate that the creation of excitations plays an important role in the resulting conductivity. Our measurements of resistive flow elucidate the microscopic origin of the dissipation and pave the way for more complex atomtronic devices.Comment: Version published in PR

    Normal-Superconducting Phase Transition Mimicked by Current Noise

    Full text link
    As a superconductor goes from the normal state into the superconducting state, the voltage vs. current characteristics at low currents change from linear to non-linear. We show theoretically and experimentally that the addition of current noise to non-linear voltage vs. current curves will create ohmic behavior. Ohmic response at low currents for temperatures below the critical temperature TcT_c mimics the phase transition and leads to incorrect values for TcT_c and the critical exponents ν\nu and zz. The ohmic response occurs at low currents, when the applied current I0I_0 is smaller than the width of the probability distribution σI\sigma_I, and will occur in both the zero-field transition and the vortex-glass transition. Our results indicate that the transition temperature and critical exponents extracted from the conventional scaling analysis are inaccurate if current noise is not filtered out. This is a possible explanation for the wide range of critical exponents found in the literature.Comment: 4 pages, 2 figure
    • …
    corecore