15 research outputs found
Topological quantization and degeneracy in Josephson-junction arrays
We consider the conductivity quantization in two-dimensional arrays of
mesoscopic Josephson junctions, and examine the associated degeneracy in
various regimes of the system. The filling factor of the system may be
controlled by the gate voltage as well as the magnetic field, and its
appropriate values for quantization is obtained by employing the Jain hierarchy
scheme both in the charge description and in the vortex description. The
duality between the two descriptions then suggests the possibility that the
system undergoes a change in degeneracy while the quantized conductivity
remains fixed.Comment: To appear in Phys. Rev.
Anomalous dimensions and phase transitions in superconductors
The anomalous scaling in the Ginzburg-Landau model for the superconducting
phase transition is studied. It is argued that the negative sign of the
exponent is a consequence of a special singular behavior in momentum space. The
negative sign of comes from the divergence of the critical correlation
function at finite distances. This behavior implies the existence of a Lifshitz
point in the phase diagram. The anomalous scaling of the vector potential is
also discussed. It is shown that the anomalous dimension of the vector
potential has important consequences for the critical dynamics in
superconductors. The frequency-dependent conductivity is shown to obey the
scaling . The prediction is
obtained from existing Monte Carlo data.Comment: RevTex, 20 pages, no figures; small changes; version accepted in PR
Quantum Interference in Superconducting Wire Networks and Josephson Junction Arrays: Analytical Approach based on Multiple-Loop Aharonov-Bohm Feynman Path-Integrals
We investigate analytically and numerically the mean-field
superconducting-normal phase boundaries of two-dimensional superconducting wire
networks and Josephson junction arrays immersed in a transverse magnetic field.
The geometries we consider include square, honeycomb, triangular, and kagome'
lattices. Our approach is based on an analytical study of multiple-loop
Aharonov-Bohm effects: the quantum interference between different electron
closed paths where each one of them encloses a net magnetic flux. Specifically,
we compute exactly the sums of magnetic phase factors, i.e., the lattice path
integrals, on all closed lattice paths of different lengths. A very large
number, e.g., up to for the square lattice, exact lattice path
integrals are obtained. Analytic results of these lattice path integrals then
enable us to obtain the resistive transition temperature as a continuous
function of the field. In particular, we can analyze measurable effects on the
superconducting transition temperature, , as a function of the magnetic
filed , originating from electron trajectories over loops of various
lengths. In addition to systematically deriving previously observed features,
and understanding the physical origin of the dips in as a result of
multiple-loop quantum interference effects, we also find novel results. In
particular, we explicitly derive the self-similarity in the phase diagram of
square networks. Our approach allows us to analyze the complex structure
present in the phase boundaries from the viewpoint of quantum interference
effects due to the electron motion on the underlying lattices.Comment: 18 PRB-type pages, plus 8 large figure
Flux-lattice melting in two-dimensional disordered superconductors
The flux line lattice melting transition in two-dimensional pure and
disordered superconductors is studied by a Monte Carlo simulation using the
lowest Landau level approximation and quasi-periodic boundary condition on a
plane. The position of the melting line was determined from the diffraction
pattern of the superconducting order parameter. In the clean case we confirmed
the results from earlier studies which show the existence of a quasi-long range
ordered vortex lattice at low temperatures. Adding frozen disorder to the
system the melting transition line is shifted to slightly lower fields. The
correlations of the order parameter for translational long range order of the
vortex positions seem to decay slightly faster than a power law (in agreement
with the theory of Carpentier and Le Doussal) although a simple power law decay
cannot be excluded. The corresponding positional glass correlation function
decays as a power law establishing the existence of a quasi-long range ordered
positional glass formed by the vortices. The correlation function
characterizing a phase coherent vortex glass decays however exponentially
ruling out the possible existence of a phase coherent vortex glass phase.Comment: 12 pages, 21 figures, final version to appear in Phys. Rev.
Dynamic Scaling and Two-Dimensional High-Tc Superconductors
There has been ongoing debate over the critical behavior of two-dimensional
superconductors; in particular for high Tc superconductors. The conventional
view is that a Kosterlitz-Thouless-Berezinskii transition occurs as long as
finite size effects do not obscure the transition. However, there have been
recent suggestions that a different transition actually occurs which
incorporates aspects of both the dynamic scaling theory of Fisher, Fisher, and
Huse and the Kosterlitz-Thouless-Berezinskii transition. Of general interest is
that this modified transition apparently has a universal dynamic critical
exponent. Some have countered that this apparent universal behavior is rooted
in a newly proposed finite-size scaling theory; one that also incorporates
scaling and conventional two-dimensional theory. To investigate these issues we
study DC voltage versus current data of a 12 angstrom thick YBCO film. We find
that the newly proposed scaling theories have intrinsic flexibility that is
relevant to the analysis of the experiments. In particular, the data scale
according to the modified transition for arbitrarily defined critical
temperatures between 0 K and 19.5 K, and the temperature range of a successful
scaling collapse is related directly to the sensitivity of the measurement.
This implies that the apparent universal exponent is due to the intrinsic
flexibility rather than some real physical property. To address this intrinsic
flexibility, we propose a criterion which would give conclusive evidence for
phase transitions in two-dimensional superconductors. We conclude by reviewing
results to see if our criterion is satisfied.Comment: 14 page
Recommended from our members
Flight experience of the Compact High Resolution Imaging Spectrometer (CHRIS).
This paper describes the initial flight experience of the Compact High Resolution Imaging Spectrometer (CHRIS) developed at Sira Electro-Optics Ltd. The imaging spectrometer is flying on PROBA, a small agile satellite, which was launched in October 2001. The main purpose of the instrument is to provide images of land areas. The platform provides pointing in both across-track and along-track directions, for target acquisition and multi-angle observations, particularly for measurement of the Bi-directional Reflectance Distribution Function (BRDF) properties of selected targets. The platform also provides pitch motion compensation during imaging in order to increase the integration time of the instrument, increasing the number of spectral bands that can be read and enhancing radiometric resolution. The instrument covers a spectral range from 400nm to 1050nm, at ≤11nm resolution. The spatial sampling interval at perigee is approximately 17m. In this mode it is possible to read out 19 spectral bands. The locations and widths of the spectral bands are programmable. Selectable on-chip integration can increase the number of bands to 63 for a spatial sampling interval of 34m. The swath width imaged is 13km at perigee
Recommended from our members
The PROBA/CHRIS Mission: A low-cost smallsat for hyperspectral, multi-angle, observations of the Earth surface and atmosphere.
Laser doppler velocimeter for use on submersible remote controlled vehicles Feasibility study
SIGLELD:6244.223(OT-R--8244) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Laser doppler velocimeter for use on submersible remote controlled vehicles Feasibility study
SIGLELD:6244.223(OT-R--8244) / BLDSC - British Library Document Supply CentreGBUnited Kingdo