675 research outputs found

    Amplification of Angular Rotations Using Weak Measurements

    Get PDF
    We present a weak measurement protocol that permits a sensitive estimation of angular rotations based on the concept of weak-value amplification. The shift in the state of a pointer, in both angular position and the conjugate orbital angular momentum bases, is used to estimate angular rotations. This is done by an amplification of both the real and imaginary parts of the weak-value of a polarization operator that has been coupled to the pointer, which is a spatial mode, via a spin-orbit coupling. Our experiment demonstrates the first realization of weak-value amplification in the azimuthal degree of freedom. We have achieved effective amplification factors as large as 100, providing a sensitivity that is on par with more complicated methods that employ quantum states of light or extremely large values of orbital angular momentum.Comment: 5 pages, 3 figures, contains supplementary informatio

    Experimental generation of an optical field with arbitrary spatial coherence properties

    Get PDF
    We describe an experimental technique to generate a quasi-monochromatic field with any arbitrary spatial coherence properties that can be described by the cross-spectral density function, W(r1,r2)W(\mathbf{r_1,r_2}). This is done by using a dynamic binary amplitude grating generated by a digital micromirror device (DMD) to rapidly alternate between a set of coherent fields, creating an incoherent mix of modes that represent the coherent mode decomposition of the desired W(r1,r2)W(\mathbf{r_1,r_2}). This method was then demonstrated experimentally by interfering two plane waves and then spatially varying the coherent between these two modes such that the interference fringe visibility was shown to vary spatially between the two beams in an arbitrary and prescribed way.Comment: 6 pages, 5 figur

    Reflections on an academic job search

    Get PDF

    State transfer based on classical nonseparability

    Get PDF
    We present a state transfer protocol that is mathematically equivalent to quantum teleportation, but uses classical nonseparability instead of quantum entanglement. In our implementation we take advantage of nonseparability among three parties: orbital angular momentum (OAM), polarization, and the radial degrees of freedom of a beam of light. We demonstrate the transfer of arbitrary OAM states, in the subspace spanned by any two OAM states, to the polarization of the same beam

    Multiplexing Free-Space Channels using Twisted Light

    Get PDF
    We experimentally demonstrate an interferometric protocol for multiplexing optical states of light, with potential to become a standard element in free-space communication schemes that utilize light endowed with orbital angular momentum (OAM). We demonstrate multiplexing for odd and even OAM superpositions generated using different sources. In addition, our technique permits one to prepare either coherent superpositions or statistical mixtures of OAM states. We employ state tomography to study the performance of this protocol, and we demonstrate fidelities greater than 0.98.Comment: 4 pages, 3 figure

    Compressive Object Tracking using Entangled Photons

    Get PDF
    We present a compressive sensing protocol that tracks a moving object by removing static components from a scene. The implementation is carried out on a ghost imaging scheme to minimize both the number of photons and the number of measurements required to form a quantum image of the tracked object. This procedure tracks an object at low light levels with fewer than 3% of the measurements required for a raster scan, permitting us to more effectively use the information content in each photon.Comment: 10 pages, 4 figure

    The eyes don’t have it: Eye movements are unlikely to reflect refreshing in working memory

    Full text link
    There is a growing interest in specifying the mechanisms underlying refreshing, i.e., the use of attention to keep working memory (WM) contents accessible. Here, we examined whether participants’ visual fixations during the retention interval of a WM task indicate the current focus of internal attention, thereby serving as an online measure of refreshing. Eye movements were recorded while participants studied and maintained an array of colored dots followed by probed recall of one (Experiments 1A and 1B) or all (Experiment 2) of the memoranda via a continuous color wheel. Experiments 1A and 2 entailed an unfilled retention interval in which refreshing is assumed to occur spontaneously, and Experiment 1B entailed a retention interval embedded with cues prompting the sequential refreshment of a subset of the memoranda. During the retention interval, fixations revisited the locations occupied by the memoranda, consistent with a looking-at-nothing phenomenon in WM, but the pattern was only evident when placeholders were onscreen in Experiment 2, indicating that most of these fixations may largely reflect random gaze. Furthermore, spontaneous fixations did not predict recall precision (Experiments 1A and 2), even when ensuring that they did not reflect random gaze (Experiment 2). In Experiment 1B, refreshing cues increased fixations to the eventually tested target and predicted better recall precision, which interacted with an overall benefit of target fixations, such that the benefit of fixations decreased as the number of refreshing cues increased. Thus, fixations under spontaneous conditions had no credible effect on recall precision, whereas the beneficial effect of fixations under instructed refreshing conditions may indicate situations in which cues were disregarded. Consequently, we conclude that eye movements do not seem suitable as an online measure of refreshing

    Rapid Generation of Light Beams Carrying Orbital Angular Momentum

    Get PDF
    We report a technique for encoding both amplitude and phase variations onto a laser beam using a single digital micro-mirror device (DMD). Using this technique, we generate Laguerre-Gaussian and vortex orbital-angular-momentum (OAM) modes, along with modes in a set that is mutually unbiased with respect to the OAM basis. Additionally, we have demonstrated rapid switching among the generated modes at a speed of 4 kHz, which is much faster than the speed regularly achieved by spatial light modulators (SLMs). The dynamic control of both phase and amplitude of a laser beam is an enabling technology for classical communication and quantum key distribution (QKD) systems that employ spatial mode encoding

    Measurement of the Photon-Plasmon Coupling Phase

    Get PDF
    Scattering processes have played a crucial role in the development of quantum theory. In the field of optics, scattering phase shifts have been utilized to unveil interesting forms of light-matter interactions. Here, we investigate the mode-coupling phase of single photons to surface plasmon polaritons in a quantum plasmonic tritter. We observe that the coupling process induces a phase jump that occurs when photons scatter into surface plasmons and vice versa. This interesting coupling phase dynamics is of particular relevance for quantum plasmonic experiments. Furthermore, it is demonstrated that this photon-plasmon interaction can be modeled through a quantum-mechanical tritter. We show that the visibility of a double-slit and a triple-slit interference patterns are convenient observables to characterize the interaction at a slit and determine the coupling phase. Our accurate and simple model of the interaction, validated by simulations and experiments, has important implications not only for quantum plasmonic interference effects, but is also advantageous to classical applications

    Hanbury Brown and Twiss Interferometry with Twisted Light

    Get PDF
    The rich physics exhibited by random optical wave fields permitted Hanbury Brown and Twiss to unveil fundamental aspects of light. Furthermore, it has been recognized that optical vortices are ubiquitous in random light and that the phase distribution around these optical singularities inprints a spectrum of orbital angular momentum onto a light field. We demonstrate that random fluctuations of light give rise to the formation of correlations in the orbital angular momentum components and angular positions of pseudothermal light. The presence of these correlations is manisfested through distinct interference structures in the orbital angular momentum-mode distribution of random light. These novel forms of interference correspond to the azimuthal analog of the Hanbury Brown and Twiss effect. This family of effects can be of fundamental importance in applications where entanglement is not required and where correlations in angular position and orbital angular momentum suffice. We also suggest that the azimuthal Hanbury Brown and Twiss effect can be useful in the exploration of novel phenomena in other branches of physics and astrophysics.Comment: Science Advance
    • …
    corecore