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The rich physics exhibited by random optical wave fields permitted Hanbury Brown and

Twiss to unveil fundamental aspects of light. Furthermore, it has been recognized that optical

vortices are ubiquitous in random light and that the phase distribution around these optical

singularities imprints a spectrum of orbital angular momentum onto a light field. We demon-

strate that random fluctuations of intensity give rise to the formation of correlations in the

orbital angular momentum components and angular positions of pseudothermal light. The

presence of these correlations is manifested through distinct interference structures in the or-

bital angular momentum-mode distribution of random light. These novel forms of interference

correspond to the azimuthal analog of the Hanbury Brown and Twiss effect. This family of

effects can be of fundamental importance in applications where entanglement is not required

and where correlations in angular position and orbital angular momentum suffice. We also

suggest that the azimuthal Hanbury Brown and Twiss effect can be useful in the exploration

of novel phenomena in other branches of physics and in astrophysics.

Introduction

In 1956, Hanbury Brown and Twiss (HBT) revolutionized optical physics with the observation of a new form

of interference produced by correlations of the intensity fluctuations of light from a chaotic source. Their

stellar interferometer collected light produced by independent sources on the disc of a star and detected at

two different locations on Earth [1]. The observation of a second-order interference effect in this configuration

was intriguing because at that time it appeared that classical and quantum theories of light offered different

1

ar
X

iv
:1

50
2.

02
08

6v
2 

 [
ph

ys
ic

s.
op

tic
s]

  8
 A

pr
 2

01
6



predictions [2]. Ever since, this effect has motivated extensive studies of higher-order classical correlations and

their quantum counterparts in optics, as well as in condensed matter and particle physics [3–6]. Fundamental

bounds have been established for the degree of correlation for a wide variety of degrees of freedom, such

as in polarization, time, frequency, position, transverse momentum, angular position and orbital angular

momentum (OAM) [7–9].

The random nature of light is an essential element of the HBT effect. Moreover, the random proper-

ties of light have been investigated and applied in a wide variety of other contexts. For example, speckled

light, intimately related to pseudothermal light, has played a fundamental role in the development of optical

physics, imaging science, and nanophotonics. In addition, the study of fundamental processes such as trans-

port phenomena, localization of light, optical vortices, and optical correlations has led to the development

of novel physics produced as a consequence of the chaotic properties of light [10–15]. These results have

motivated interest in the design of random lasers and of disordered structures that scatter light in random

directions, which serve as sources of pseudothermal light [16].

As identified by Berry, optical vortices produced by the interference of random waves are intrinsic el-

ements in chaotic light [17, 18]. Interest in this field has exploded since the recognition of a special class

of vortices that carry OAM, characterized by an azimuthal phase dependence of the form ei`φ, where ` is

the OAM mode number and φ is the azimuthal angle [19]. The azimuthal properties of light, described by

the conjugate variables of angular position and OAM, have shown potential for technological applications in

information science, remote sensing, imaging, and metrology [20]. In astrophysics, recent theoretical studies

have predicted that rotating black holes can imprint an OAM spectrum onto light. The measurement of

this spectrum could lead to an experimental demonstration of the existence of rotating black holes [21].

In addition, the optical vortex coronagraph has allowed the observation of dim exoplanets by canceling a

diffraction-limited image of a star [22]. More recently, it has been proposed to use rotational Doppler shifts

for astronomy [23].

Here, we show that random fluctuations give rise to the formation of intensity correlations among the

OAM components and among the angular positions of pseudothermal light. Furthermore, we show that the

presence of these correlations leads to a variety of complex interference structures that correspond to the

azimuthal analog of the HBT effect. In the original HBT experiment, two detectors were used at different

locations to gain information about the physical size of a distant incoherent source. In our experiment, we

use two detectors to measure intensity correlations between two OAM components of an incoherent source

with controllable spatial and temporal coherence. We show that such correlations unveil the azimuthal
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structure of the source, which is shaped in the form of double angular slits in our realization. We study the

far-field pattern by projecting it onto various OAM modes, and measure first- and second-order interference

patterns of this structure. We identify two key signatures of the azimuthal HBT effect. The first is that

HBT interference can show features in the OAM mode distribution at both the frequency and at twice the

frequency of the first-order coherence produced by coherent light. The second consists of a shift of the

interference structure when plotted as a function of OAM. We find that each of these effects depends on the

strength of the fluctuations of the pseudothermal light. We also study the nature of the correlations between

different OAM components and between different angular positions of pseudothermal light, and we find that

these depend on the strength of the fluctuations as well. These effects correspond to the classical counterpart

of azimuthal Einstein-Podolsky-Rosen (EPR) correlations [9], and throughout this article, we highlight the

similarities and differences between thermal and quantum correlations as manifested in the azimuthal degree

of freedom.

Results

Origin of HBT interference in the OAM domain

As in the original HBT experiment, we collect light from two portions of a random field. This is carried out

through the use of two angular slits. We represent the optical field after the slits as

Ψ(r, φ) = E(r)Φ(r, φ)[A(φ) +A(φ− φ0)]. (1)

Here, E(r) represents the coherent optical field produced by a laser, Φ(r, φ) is a particular realization of a

random phase screen, and A(φ) describes the transmission function of the angular slits. A(φ) is centered at

0 radians, and, therefore, A(φ−φ0) is centered at φ0. We next consider the projection of the optical field of

Eq. (1) onto a set of OAM modes. The result of such a measurement is described by the quantity ap` defined

as
∫
r dr dφ (2π)−1/2R∗p(r)e

−i`φΨ(r, φ), where R∗p(r) is a radial mode function with radial index p and ` is

the OAM index. Consequently, the measured intensity for each OAM projection I` is equal to
∑
p |ap`|

2
.

The average of the intensity over an ensemble of different realizations of the fluctuating field is then given

by

〈I`〉 =
α2sinc2 (α`/2)

2π2

∫
r dr |E(r)|2 {2 + e−i`φ0〈Φ∗(r, 0)Φ(r, φ0)〉+ ei`φ0〈Φ∗(r, φ0)Φ(r, 0)〉}, (2)

where α is the width of the slits, and the ensemble average is denoted by 〈...〉. It is evident that the angular

double slit gives rise to Young’s (first-order) interference in the OAM-mode distribution of the optical field
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and that this interference is dependent on the angular separation of the two slits, φ0. Furthermore, the

visibility of the interference pattern is determined by the terms 〈Φ∗(r, 0)Φ(r, φ0)〉 and 〈Φ∗(r, φ0)Φ(r, 0)〉,

which quantify the field correlation between two different angular positions. These terms are sensitive to the

phase difference of the field at two points. Consequently, the interference visibility becomes smaller as the

degree as spatial coherence is reduced.

In direct analogy to the HBT experiment, in which two detectors measure the transverse momentum

(far-field) distribution of a random field emitted from two locations of a star, we measure the correlation

between two OAM components of light emitted from a random source shaped as two angular slits. Similar to

linear position and linear momentum, angular position and OAM are conjugate variables and form a Fourier

pair. Thus, we consider the second-order coherence function G
(2)
`1,`2

= 〈I`1I`2〉, which is the key quantity that

describes the azimuthal HBT effect. This quantity is a measure of the intensity correlations between the

components of the the field with OAM values `1 and `2.

We consider a special case in which we measure the the second-order correlation at symmetrically dis-

placed OAM values of ` and −`. In the context of the original experiment of HBT, this situation would

involve measuring the receiving apertures by equal amounts in opposite directions. To analyze this situation,

we need to determine the second-order coherence function G
(2)
`,−` = 〈I`I−`〉. We find that this quantity can

be expressed (see Supplementary Materials) as

〈I`I−`〉 = G0 + G` + G2`. (3)

The intensity correlation function thus consists of three contributions. The first is a constant term denoted

by G0 whose form is shown in the Supplementary Materials. The second term, G`, describes an interference

pattern that oscillates in ` at the same frequency as 〈I`〉 and is given by

G` =
α2 sinc2(α`/2)

2π2

∫
r1dr1r2dr2 |E(r1)|2 |E(r2)|2

(
e−i`φ0{〈Φ∗(r1, 0)Φ(r1, φ0)〉+ 〈Φ∗(r2, φ0)Φ(r2, 0)〉}+ c.c.

)
.

(4)

The last term, G2`, shows an interference pattern that oscillates in the OAM value ` with twice the frequency

of 〈I`〉 and it is given by

G2` =
α4sinc4 (α`/2)

4π4

∫
r1dr1r2dr2 |E(r1)|2 |E(r2)|2

(
e−2i`φ0{〈Φ∗(r1, 0)Φ(r1, φ0)Φ∗(r2, φ0)Φ(r2, 0)〉}+ c.c.

)
.

(5)

We see that the contribution G` depends on a phase-sensitive term 〈Φ∗(r, 0)Φ(r, φ0)〉 that decreases in

magnitude with increasing randomness induced by field fluctuations. The visibility of this contribution to

the interference pattern thus decreases with increasing field fluctuations. However the contribution G2` is
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proportional to a positive-definite quantity 〈|Φ(r, 0)|2 |Φ(r, φ0)|2〉 that survives even in the presence of the

fluctuations in the chaotic field.

Figure 1: Experimental setup for the study of the azimuthal HBT effect. (A) The 532 nm output of a solid laser is directed
onto a digital micro-mirror device (DMD), where a random transverse phase structure is impressed onto the beam. A 4f optical
system consisting of two lenses with different focal lengths (figure not to scale) and a pinhole is used to isolate the first diffraction
order from the DMD, which is a pseudothermal beam of light. This beam is then passed through a beam splitter (BS) to create
two identical copies. Each copy is sent to a separate spatial light modulator (SLM) onto which a computer-generated hologram
is encoded. (B) For the HBT measurements, a pair of angular slits is encoded onto the SLMs. In addition, forked holograms
corresponding to OAM values are encoded onto the same holograms to project out controllable OAM components. For our
measurements of the OAM and angular-position correlation functions, we do not use the double slit but simply project onto
OAM values or angular wedges, respectively. (C) Intensity distribution of a generated pseudothermal beam of light.

Experimental demonstration of azimuthal HBT interference

Our experimental setup is depicted in Fig. 1 (A and B). We use a solid state laser working at 532 nm

along with a digital micro-mirror device (DMD) and a 4f optical system containing two lenses and a spatial

filter in the Fourier plane to isolate one order of diffraction from the DMD. We first impress a sequence

(at a 1.4-kHz writing rate) of random transverse structures having Kolmogorov statistics onto the beam to

simulate thermal light [24, 25]. For details, see Materials and Methods. This procedure modifies the spatial
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and temporal coherence of the beam in a fashion similar to the modification induced by a rotating ground

glass plate [26] (see the intensity distribution of the beam in Fig. 1 C), which is often used to produce light

with thermal statistics. We quantify the spatial coherence of the beam by means of the Fried coherence

length r0 [27]. The strength of spatial phase variations within the beam increases as r0 decreases. By virtue

of ergodicity, iterating through an ensemble of such holograms results in random phase fluctuations in time

characterized by the parameter r0. The structured beam is then split into two parts at a beam splitter, and

each is imaged onto a spatial light modulators (SLM). On each SLM, a pair of angular slits and a forked

diffraction grating are encoded (see Fig. 1B). The first diffraction order of the SLM is collected by a single-

mode optical fiber (SMF), measured by avalanche photodiodes (APDs), and their degree of correlation is then

computed. The time window for determining coincidence events is set to 42 ns, and the total accumulation

time is set to 15 s.

We begin with the measurement of first-order (Young’s) interference in the OAM domain, which can be

observed in the OAM-mode distribution of light measured by either of the two detectors. For each value of `,

we impress several hundred random phase screens onto the DMD, all characterized by the same value of r0,

and we then calculate the correlation of the intensity. We repeat the experiment for all ` in the range ` = −15

to ` = +15. We perform this task by encoding holograms onto the SLMs in which the two angular apertures

are multiplied by different forked diffraction gratings (see Fig. 1B). The OAM-mode distributions of the

field as given by 〈I`〉 are shown in Fig. 2 (A to D). Fig. 2A shows the interference obtained when spatially

coherent light is used, and Fig. 2 (B to D) shows the interference for different regimes of pseudothermal light,

as characterized by successively decreasing values of r0. The visibility is seen to decrease with the decrease

of the spatial coherence of the source.

We next study second-order coherence. Our experimental results for the second-order coherence function

∆G
(2)
`,−`, defined as G`+G2`, are shown in Figs. 2 (E to H). For a coherent beam (Fig. 2E), G` is the dominant

contribution to ∆G
(2)
`,−`. We reach this conclusion by noting that the data oscillate at the same frequency

as the first-order interference shown in Fig. 2A and by recalling the discussions of Eqs. (4) and (5). We

also note that G` decreases as the degree of the spatial coherence of the source is reduced, making G2` the

dominant contribution in this case; we reach this conclusion by an examination of Eq. (5), which shows that

G2`, in contrast to G`, does not decrease with decreasing degree of spatial coherence of the source. We see this

behavior in the sequence of results shown in Figs. 2 (F to H). For example, in Fig. 2F, the contribution from

G2` is smaller than that from G`. This transition is marked by the formation of second-order correlations in

the angular position and OAM variables.
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Figure 2: Interference transitions in the OAM-mode distribution of light. (A to D) First-order (Young’s) interference. (E
to H) Second-oder HBT interference. The first column (A and E) shows interference produced by coherent light, whereas the
other panels show the measured interference for different strengths of the fluctuations of pseudothermal light, as characterized
by the Fried coherence length. In each case, the angular width of the slits α is π/12 and the angular separation of the slits φ0
is π/6. Bars represent data, whereas the line is the theoretical curve predicted by theory.

It is interesting that there is a regime of random fluctuations for which strong frequency-` oscillations

are seen in the first-order interference while strong frequency-2` oscillations are seen in the second-order

interference (see Figs. 2, B and F). Note also that, for the case of quantum correlations, entangled photons

do not produce interference in singles but only in correlations such as those shown in Fig. 2 (D and H) [8,12].

The interplay between G` and G2` might be useful to the study of the relationship between coherence and

the quantum nature of light.

It is important to remark that different degrees of coherence define regimes of the HBT effect [28], as

shown in Fig. 2. In our case, the varying relative magnitude of the three terms contributing to the second-

order coherence G(2)`,−` results in different shapes (see Eq. 3). For example, G2` makes the pattern in Fig. 2E

sharper, but the same term changes the frequency of the interference structure in Fig. 2H.

The general form of the azimuthal HBT effect is obtained when the intensity correlations are calculated

for arbitrary mode indices `1 and `2. As discussed above, the HBT effect depends on the degree of coherence

of the source. Specifically, an interesting feature is observed for the partially coherent regime characterized

by r0 equal to 150 µm. In our experimental study of this situation, we hold the OAM value measured in

one arm of our interferometer fixed at the value `0 whereas we vary the OAM value in the other arm. We

set the value of `0 first to +2 and later to −2. In the other arm, we perform measurements for each value in

the range ` = −15 to +15. The results of these measurements are shown in Fig. 3. It should be noted that

the OAM spectrum plotted as a function of the the OAM value of arm 2 is shifted left (see Fig. 3A) or right

(Fig. 3B) depending on the value of OAM chosen for arm 1. The procedure used in the measurement is

analogous to using one fixed detector and one moving detector in the original setup of HBT [1]. The results
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of Fig. 3 (A and B) are described by the quantity 〈I`I`0〉 and can be expressed in terms of five contributing

terms (see section 2 of the Supplementary Materials).

For the strength of fluctuations that we used for these measurements, one of the detectors measures an

interference pattern equal to the one shown in Fig. 2C, whereas the other measures a noisy but constant

signal. When the correlation of the two signals is calculated, the visibility of the interference pattern is

dramatically increased and shifted in the OAM-mode distribution of the field. Effectively, we are using the

random fluctuations of the field to increase the fringe visibility. For example, if instead of projecting an

OAM value equal to 2 or -2 as we did, we could project on ` equal to zero and retrieve the original but

improved pattern with increased visibility. This effect could find importance in realistic applications. These

effects manifest the presence of second-order correlations in the OAM components and angular positions of

pseudothermal light.

Figure 3: Experimental demonstration of the azimuthal HBT effect of light. (A and B) ∆G
(2)
`,`0

plotted as a function of the

OAM value of arm 2 for two different values of the OAM number of arm 1. The green bar shows the center of the interference
pattern for singles counts shown in Fig. 2C, whereas the purple bar shows the center of the displayed interference pattern.

We would like to emphasize that although the angular slits and the forked holograms for OAM projections

are realized on the same SLMs, they correspond to conceptually distinct components of the experiment. The

angular slits are used to provide a nontrivial azimuthal structure for the incoherent source, whereas the

forked holograms are used to measure correlations in the OAM domain.
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Measurement of angular momentum correlations and angular po-

sition correlations

Now we explore the nature of the underlying fluctuation-induced correlations in OAM and in angular position

that lie at the origin of the HBT effect. The superposition of randomly fluctuating waves produces an OAM

spectrum that broadens with the degree of fluctuation in the source of pseudothermal light. In the present

experiment, the OAM spectrum is controlled by setting r0 equal to 70 µm. This situation produces a broad

OAM spectrum that remains almost constant over the range of OAM values that we measure. We use the

same setup as that of Fig. 1, although we omit the two angular slits that we used in the studies of azimuthal

HBT interference effects reported above. On the first SLM (see Fig. 1), we display a forked hologram

corresponding to a fixed value of OAM, whereas on the second SLM, we display a series of holograms with

different values of OAM. The measured intensity for a single value of OAM 〈I`〉 that is projected out using

the SLM can be approximated as
∫
r2dr2dφ2 |E(r)|2 g(r)2, where g(r) is the Gaussian mode supported by

the SMF (see section 3 of the Supplementary Materials).

In Fig. 4A, we plot the measured value of g(2) = 〈I`1I`2〉/〈I`1〉〈I`2〉. We find a strong positive correlation

between the OAM values measured in the two arms. As shown in section 3 of the Supplementary Materials,

in the limit of a strong fluctuations, second-order correlations in the OAM degree of freedom can be described

by

〈I`1I`2〉 = 〈I`1〉〈I`2〉(1 + δ`1,`2). (6)

Our experimental results show crosstalk between different OAM numbers that is not predicted by Eq.

(6). This crosstalk results from experimental imperfections in the projective measurement process used to

characterize OAM. The correlations in Fig. 4A show two significant differences from the quantum correlations

observed in spontaneous parametric down conversion (SPDC). The first is that SPDC shows strong anti-

correlations of the the two OAM values. This behavior is a consequence of the conservation of OAM in a

parametric nonlinear optical process. The second difference is the presence of a background term (the “1”

in Eq. (6)), which prevents the existence of perfect correlations.

Randomly fluctuating beams also produce correlations in angular position. These correlations are inves-

tigated by encoding angular apertures onto the SLMs. In order to make our measurements precise, we utilize

narrow angular apertures of π/15 radian size. We keep one aperture at a fixed location, and we measure

correlations for 60 different angular positions of the other aperture. Because of rotational symmetry, this

procedure permits the full characterization of correlations in angular position. As shown in Fig. 4B, for
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Figure 4: Measurement of intensity correlations in the angular domain for random light. (A) Normalized second-order correlation
function in the OAM domain. (B) Presence of strong correlations for the conjugate space described by the angular position
variable.

this level of fluctuation, the intensities of the projected angular apertures are strongly correlated, and the

nature of these correlations can be approximated by 〈IφIφ0
〉 = 〈Iφ〉〈Iφ0

〉(1 + f(φ − φ0)). In this equation,

the subscript φ refers to the arm where the variable-position angular aperture is placed and φ0 represents

the arm with the fixed-position aperture. Also, f(φ− φ0) represents some strongly peaked function (see the

Supplementary Meaterials).

As we have shown throughout this paper, the HBT correlations of pseudothermal light lead to effects

that show resemblance to those previously observed with entangled photons [8, 9, 29, 30]. The reason for

this behavior is that, in contrast to the degree of second-order coherence that describes coherent light,

the functions that describe second-order correlations in angular position and OAM for random fields are

nonseparable. For example, Eq. 6 does not contain the product of the averaged intensities measured by each

of the two detectors. The presence of a term that describes point-to-point correlations (in this case, the delta

function δ`1,`2) does not allow the factorization of the degree of coherence as the simple product of intensities

between the two arms. As a consequence, the HBT structures are also described by a nonseparable function,

and its frequency, visibility, and shifts increase with the fluctuations of the source or the strength of angular

position and OAM correlations. As the strength of the fluctuations decreases, the nonseparable part of the

function tends to vanish, and thus, the second order correlation function can be factorized in terms of OAM

or angular position. A separable function will not lead to the HBT effect in the OAM-mode distribution of

light; see the transition shown in Fig. 2.

Intensity correlation in the OAM components and angular position of pseudothermal light show simi-
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larities with the azimuthal EPR effect, observed in photons entangled in angular position and OAM [9].

However, our results show that for pseudothermal light, the correlations are present but not perfect, unlike

the case of entangled photons where the correlations are perfect. Thus, it is impossible to violate, for ex-

ample, the azimuthal EPR criterion (∆`)2(∆φ)2 ≥ 1/4. However, as shown in Fig. 4, our correlations are

stronger for same values of OAM or angular positions. For example, if background subtraction is performed,

the variance product for ∆` and ∆φ is similar to that achieved for nonclassical light. For our experimental

results (∆`)2(∆φ)2 is 0.054, of similar order to the one reported by Leach et al. [9]. The uncertainties were

measured by performing a least squares fit of the data to a Gaussian distribution and recording the standard

deviation of the result. Note that this does not imply a violation of the EPR criterion.

Discussion

The azimuthal HBT effect unveils fundamental physics that can be applied to develop novel applications that

exploit OAM correlations in random light. We believe that many interesting protocols for remote sensing and

object identification that use azimuthal correlations in entangled photons will be able to exploit azimuthal

correlations in random light and the azimuthal HBT effect [29–31]. Furthermore, in recent years, researchers

have developed interest in utilizing beams carrying OAM for applications in astronomy, but unfortunately the

propagation through random media produces chaotic phase fluctuations and optical vortices [31–35]. These

effects pose serious problems for methods based on OAM of light, limiting their applications [20,36]. However,

it has been shown that second-order interference effects are less sensitive to the coherence properties of the

source. This is one of the advantages of the HBT interferometer against the Michelson interferometer [37].

In addition, it has been demonstrated that imaging schemes based on second-order correlations are robust

against turbulence [38]. Therefore, we suggest that the azimuthal HBT effect offers the possibility of exploring

novel phenomena in astrophysics, one example being the relativistic dynamics produced by rotating black

holes [21].

We have demonstrated that random fluctuations of light give rise to the formation of intensity correlations

in the OAM components and angular positions of pseudothermal light. These correlations are manifested

through a new family of interference structures in the OAM-mode distribution of pseudothermal light that

can be described by the azimuthal HBT effect. We have shown how the strength of the random fluctuations

of light determines various regimes for this effect. In addition, we identified two key features of the azimuthal

HBT effect. The first is characterized by a structure in which the OAM frequency is doubled with respect
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to the interference produced by a coherent beam of light. The second is marked by a shift of the OAM

spectrum with a change in the OAM reference value. We anticipate that these properties of random optical

fields will be fundamentally important for applications where quantum entanglement is not required and

where correlations in angular position and OAM suffice.
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Materials and Methods

Source of Pseudothermal light. Pseudothermal light was generated by means of phase screen holograms

obeying Kolmogorov statistics. Kolmogorov’s statistical theory is used to model chaotic turbulent fluids.

We have generated Kolmogorov phase screens for varying levels of simulated randomness by using the

approximate power spectral density of Φ(f) ≈ 0.023r
−5/3
0 f−11/3. Fried’s parameter r0 is related to the

average coherence length between two points in the beam. By adjusting Fried’s parameter r0, we can

increase or decrease the size of and the distance between the phase cells and thus the amount of randomness

in the phase screens. By adding normally distributed deviations to the power spectral density, we can then

take the real part of the inverse Fourier transform in order to generate a single Kolmogorov phase screen.

A DMD can be used to manipulate both the phase and amplitude profile of a light beam. A translation

in a binary diffraction grating will cause a phase shift to occur in the diffracted light, whereas varying the

duty cycle of the periodic grating will change the efficiency, and thus the amplitude, of the diffracted beam.

Both of these techniques can be done locally to spatially control the phase and amplitude of the beam.

The generated Kolmogorov screens were then converted into binary diffraction gratings to be displayed on

a DMD.

Figure 5: Example of a frame sent to the DMD. It contains 24 binary holograms encoded in bit plane slices.

We used the Texas Instruments LightCrafter Evaluation Module (DLPC300) which drives a Texas Instru-

ments DLP3000 DMD. The DMD contains an array of 608× 684 micromirrors with a total diagonal length

of 7.62 mm. The DMD was operated in a mode that allowed a binary pattern to be displayed at a rate of

1440 Hz. The DMD takes a 24-bit color 60 Hz signal over an HDMI connection. Because the image contains

24 bits, a single video frame can contain 24 binary images. In this mode, the DMD will cycle through the

least significant bit to the most significant bit in the blue signal of a frame. Then, the DMD will display

the bits in the red signal and, finally, the green signal. Kolmogorov screens (72,000) were encoded into three

thousand 24-bit frames for each value of Fried’s parameter r0 = 70 µm, 150 µm and 210 µm. Figure 5

shows an example of one of the generated frames sent to the DMD. This frame contains 24 binary holograms
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encoded in the bit planes of the image to be displayed sequentially.

Figure 6: Example DMD holograms and resulting beams measured before the image plane.

Figure 6 shows examples of the intensity distribution for three random beams generated by this method.

In addition, in each case, an example of one of the holograms used to produce the beam is shown. Note that

the randomness within the beam increases as the value of r0 decreases.
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Supplementary Materials

1. The HBT effect for symmetrically displaced modes (` and −`).

Here, we derive the equations utilized in the manuscript. We start by describing HBT interference of

pseudothermal light. We assume that the beam of light from our laser is described by the electric field E(r),

where r is the radial coordinate in the transverse plane. In addition, we assume that the initial electric field

does not possess any azimuthal dependence. We encode a random Kolmogorov phase screen Φ(r, φ) onto the

beam. Later, the field illuminates two angular apertures centered on angles 0 and φ0. Thus the field after

the two slits is given by

Ψ(r, φ) = E(r)Φ(r, φ)[A(φ) +A(φ− φ0)].. (7)

As described earlier in the manuscript, we replace the widely used ground-glass plate with a series of phase

screens that change rapidly in comparison to the accumulation time of the measurement, thus creating an

ensemble of field realizations. The next step is to find the intensity of the field for a given OAM eigenstate.

We can write the electric field after the two slits as a linear combination of radial-OAM modes. We designate

a complete radial basis as Rp(r), although we do not make use of any explicit form for this basis. We thereby

express the field after the slits as

Ψ(r, φ) =
∑
`,p

ap`Rp(r)
ei`φ√

2π
, (8)

where the expansion coefficients ap` are given by

ap` =

∫
rdrdφR∗p(r)

e−i`φ√
2π

Ψ(r, φ). (9)

Thus, the measured intensity after projecting the beam onto OAM mode ` is given by

I` =
∑
p

|ap`|2 =
∑
p

∫
r1dr1r2dr2dφ1dφ2Ψ∗(r1, φ1)Rp(r1)

ei`φ1

√
2π

e−i`φ2

√
2π

R∗p(r2)Ψ(r2, φ2)

=

∫
r1dr1r2dr2dφ1dφ2Ψ∗(r1, φ1)Ψ(r2, φ2)

ei`(φ1−φ2)

2π

∑
p

Rp(r1)R∗p(r2)

=
1

2π

∫
rdrdφ1dφ2Ψ∗(r, φ1)Ψ(r, φ2)ei`(φ1−φ2),

(10)

where the last form comes from using the relation
∑
pRp(r1)R∗p(r2) = (1/r1)δ(r1− r2), which is true for any

complete normalized set of basis functions, where δ(r) is the usual Dirac delta function. Now we replace

Ψ(r, φ) with the electric field after the two angular slits given by Eq. 7. For simplicity, we first approximate

A(φ) by δ(φ) and A(φ− φ0) by δ(φ− φ0). The quantity I` then becomes

I` =
1

2π

∫
rdr |E(r)|2

{
2 + e−i`φ0Φ∗(r, 0)Φ(r, φ0) + ei`φ0Φ∗(r, φ0)Φ(r, 0)

}
. (11)
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We next take the ensemble average to obtain

〈I`〉 =
1

2π

∫
rdr |E(r)|2

{
2 + e−i`φ0〈Φ∗(r, 0)Φ(r, φ0)〉+ ei`φ0〈Φ∗(r, φ0)Φ(r, 0)〉

}
. (12)

In reality, however, the finite size of the slits produces an envelope, caused by diffraction, that modulates

the form of the interference pattern. If a slit with a width α is considered, the interference pattern can be

easily calculated to be
∫ π
−π dφf(φ)e−iφ`, where in our case f(φ) is equal to 1 in the range from −α/2 to

α/2 and is equal to 0 otherwise. This integral produces a diffraction envelope given by α
2π sinc

(
`α
2

)
. The

diffraction produced by the second slit can likewise be described as α
2π sinc

(
`α
2

)
e−i`φ0 . The intensity of the

total diffraction is described as
(
α
π

)2
sinc2

(
`α
2

)
(1 + cos (`φ0)). Taking this result into account, we find that

the first-order-interference diffraction pattern is given not by Eq. 12. but rather by

〈I`〉 =
α2sinc2(`α/2)

2π2

∫
rdrE2(r)

{
2 + e−i`φ0〈Φ∗(r, 0)Φ(r, φ0)〉+ ei`φ0〈Φ∗(r, φ0)Φ(r, 0)〉

}
. (13)

We next develop appropriate approximations for the quantities defined above. A reasonable assumption

is that the field fluctuations follow Gaussian statistics such that

〈Φ∗(r1, 0)Φ(r2, φ0)〉 = exp (−r
2
1 + r22 − 2r1r2 cosφ0

r20
). (14)

By setting r1 equal to r2, we find that

〈Φ∗(r, 0)Φ(r, φ0)〉 = exp(−
4r2| sin φ0

2 |
2

r20
) = exp(−βr2). (15)

The last form of this expression defines the quantity β. For a fully coherent beam, (that is, for r0 � r, where

r0 is the Fried parameter introduced in Section 3) we see that to very high accuracy 〈Φ∗(r, 0)Φ(r, φ0)〉 is

equal to 1. As r0 decreases the value of the correlation function 〈Φ∗(r, 0)Φ(r, φ0)〉 also decreases. Through

use of Eq. 14 expression (6) for the intensity can be expressed as

〈I`〉 = I0 + I`

I0 =
1

π

∫
rdrE2(r)

I` =
cos(`φ0)

π

∫
rdr |E(r)|2 exp(−βr2).

(16)

As r0 decreases, β increases and most of the contribution to the integral in the last expression comes from

r ≈ 0, but since the integrand is zero at that point, the integral vanishes. In this limit, I0 makes the only

contribution to 〈I`〉 and the spectrum becomes flat, that is, 〈I`〉 shows no dependence on the value of `.

Next we derive an expression for the correlations between projections onto OAM values of ` and −`, that
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is,

I`I−` =
1

4π2

∫
r1dr1 |E(r1)|2

{
2 + e−i`φ0Φ∗(r1, 0)Φ(r1, φ0) + ei`φ0Φ∗(r1, φ0)Φ(r1, 0)

}
×
∫
r2dr2 |E(r2)|2

{
2 + ei`φ0Φ∗(r2, 0)Φ(r2, φ0) + e−i`φ0Φ∗(r2, φ0)Φ(r2, 0)

}
≡ G0 + G` + G2`,

(17)

where the three contributions to I`I−` are given by

G0 =
1

π2

∫
r1dr1r2dr2 |E(r1)|2 |E(r2)|2 +

1

4π2

∫
r1dr1r2dr2 |E(r1)|2 |E(r2)|2 Φ∗(r1, 0)Φ(r1, φ0)Φ∗(r2, 0)Φ(r2, φ0)

+
1

4π2

∫
r1dr1r2dr2 |E(r1)|2 |E(r2)|2 Φ∗(r1, φ0)Φ(r1, 0)Φ∗(r2, φ0)Φ(r2, 0)

(18)

G` =
1

2π2

∫
r1dr1r2dr2 |E(r1)|2 |E(r2)|2 e−i`φ0 {Φ∗(r1, 0)Φ(r1, φ0) + Φ∗(r2, φ0)Φ(r2, 0)}+ c.c., and (19)

G2` =
1

4π2

∫
r1dr1r2dr2 |E(r1)|2 |E(r2)|2 e−2i`φ0 {Φ∗(r1, 0)Φ(r1, φ0)Φ∗(r2, φ0)Φ(r2, 0)}+ c.c. (20)

We next estimate the ensemble averages of these quantities. For a field with strong random fluctuations,

the field correlation between two different angular positions is very small and thus the term G` does not

contribute significantly to 〈I`I−`〉. A similar situation occurs for the second and third contributions of G0;

it is important to note that these terms contain the quantities 〈Φ∗(r1, 0)Φ(r1, φ0)Φ∗(r2, 0)Φ(r2, φ0)〉 and

〈Φ∗(r1, φ0)Φ(r1, 0)Φ∗(r2, φ0)Φ(r2, 0)〉, and these quantities vanish when r1 = r2. They vanish because they

describe the average of the product of two chaotic and independent variables. Thus, the main contributions to

the second-order interference are the first term in Eq. 18 (which does not vary with φ0) and the contribution

〈G2`〉 =
e−2i`φ0

4π2

∫
r1dr1r2dr2 |E(r1)|2 |E(r2)|2 〈Φ∗(r1, 0)Φ(r1, φ0)Φ∗(r2, φ0)Φ(r2, 0)〉+ c.c.. (21)

It is important to note that, contrary to the correlation functions given by 〈Φ∗(r1, 0)Φ(r1, φ0)Φ∗(r2, 0)Φ(r2, φ0)〉

and 〈Φ∗(r1, φ0)Φ(r1, 0)Φ∗(r2, φ0)Φ(r2, 0)〉, the correlation function 〈Φ∗(r1, 0)Φ(r1, φ0)Φ∗(r2, φ0)Φ(r2, 0)〉 is

equal to unity for r1 = r2. We therefore obtain

〈G2l〉 =
e−2i`φ0

4π2

∫
r21dr1 |E(r1)|4 + c.c. (22)

We thus conclude that the quantity 〈IlI−l〉 is given by the sum of the contributions of Eq. 22 and the first

term in Eq. 18 or

〈IlI−l〉 ≈
(

1

π

∫
rdr |E(r)|2

)2

+

(
cos 2lφ0

2π2

∫
r2dr |E(r)|4

)
. (23)

For the case of slits with finite size, this result must be modified for the same reasons given in the discussion
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following Eq. 12. One thereby obtains

〈IlI−l〉 ≈
(

1

π

∫
rdr |E(r)|2

)2

+
α4sinc4

(
`α
2

)
4π4

(
cos 2lφ0

2π2

∫
r2dr |E(r)|4

)
. (24)

2. The HBT effect for arbitrary mode indices `1 and `2.

The intensity correlation between two arbitrary OAM modes 〈I`1I`2〉 produces a complicated second-order

correlation function comprised of five terms. The contribution of each term is determined by the degree of

fluctuations in the field. One is the constant term G0 given by 1
π2

∫
r1dr1r2dr2〈|E(r1)|2 |E(r2)|2〉. There are

two terms whose contributions are equally important; one oscillates with a frequency `1φ0 and the other

with `2φ0. The strength of these terms is determined by the quantity 〈Φ∗(r, 0)Φ(r, φ0)〉, which is negligible

for highly chaotic light (r0 � r). The frequency of the fourth component is determined by the quantity

(`1 + `2)φ0, although its strength is dictated by the quantity 〈Φ∗(r, 0)Φ(r, φ0)Φ∗(r, 0)Φ(r, φ0)〉. For highly

chaotic fields this is an extremely small contribution. The primary contribution to 〈I`1I`2〉 is therefore given

by the term

G`1,`2 =
α4sinc4

(
[`1−`2]α

2

)
4π4

∫
r1dr1r2dr2 |E(r1)|2 |E(r2)|2 (e−i(`1−`2)φ0〈Φ∗(r1, 0)Φ(r1, φ0)Φ∗(r2, φ0)Φ(r2, 0)〉

+c.c.)

(25)

Note that this contribution describes an interference pattern that depends on the values of both `1 and `2.

3. Orbital angular momentum correlations and angular position correlations.

In this section we derive expressions for the correlations of pairs of OAM values and pairs of angular

positions. The light that emerges from the DMD is given by E(r)Φ(r, φ). We make two copies of this field

using a beam splitter and find the coincidences between projections onto two different modes of light. Let

us first discuss the projection of one of the beams. The amplitude of the projection onto OAM mode ` is

given by

a` =

∫
rdrdφE(r)Φ(r, φ)

e−i`φ√
2π

g(r), (26)

where g(r) is the radial profile of the single-mode collection fiber, which is a Gaussian function. The intensity

|a`|2 is given by

I` =

∫
r1dr1dφ1E(r1)Φ(r1, φ1)

e−i`φ1

√
2π

g(r1)×
∫
r2dr2dφ2E∗(r2)Φ∗(r2, φ2)

ei`φ2

√
2π
g(r2). (27)

Therefore the ensemble-averaged intensity after the projection is given by

〈I`〉 =

∫
r1dr1r2dr2dφ1dφ2E(r1)g(r1)E∗(r2)g(r2)

e−i`(φ1−φ2)

2π
〈Φ(r1, φ1)Φ∗(r2, φ2)〉. (28)

We are considering the case of highly fluctuating light; in this regime 〈Φ(r1, φ1)Φ∗(r2, φ2)〉 can be approxi-
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mated by (1/r1)δ(r2 − r1, φ2 − φ1), leading to the result

〈I`〉 =
1

2π

∫
r1dr1dφ1 |E(r1)|2 g(r1)2. (29)

Note that this quantity is independent of the value `. Now let us consider the case of two coincident

projections. The amplitude of coincident projections is given by

a`1a`2 = Π2
i=1

(∫
ridridφiE(ri)Φ(ri, φi)

e−i`iφi

√
2π

g(ri)

)
. (30)

We measure the rate at which these coincidences occur, which is given by

I`1I`2 =

∫
r1dr1dφ1E(r1)Φ(r1, φ1)

e−i`1φ1

√
2π

g(r1)×
∫
r2dr2dφ2E(r2)Φ(r2, φ2)

e−i`2φ2

√
2π

g(r2)

×
∫
r3dr3dφ3E∗(r3)Φ∗(r3, φ3)

ei`1φ3

√
2π

g(r3)×
∫
r4dr4dφ4E∗(r4)Φ∗(r4, φ4)

ei`2φ4

√
2π

g(r4).

(31)

After taking the statistical average, we obtain

〈I`1I`2〉 =

∫
r1dr1dφ1E(r1)

e−i`1φ1

√
2π

g(r1)×
∫
r2dr2dφ2E(r2)

e−i`2φ2

√
2π

g(r2)

×
∫
r3dr3dφ3E∗(r3)

ei`1φ3

√
2π

g(r3)×
∫
r4dr4dφ4E∗(r4)

ei`2φ4

√
2π

g(r4)× 〈Φ(r1, φ1)Φ∗(r3, φ3)Φ(r2, φ2)Φ∗(r4, φ4)〉.

(32)

Following the same considerations and a similar procedure those used in obtaining Eq. 17, we write the

four-point coherence function as the sum of three contributions, each a product of two 2-point coherence

functions. One of the contributions is always negligible for highly chaotic light. Another contribution leads

to the simple product 〈I`1〉〈I`2〉. This contribution is actually independent of the values `1 and `2 in the limit

of highly chaotic light for the same reason stated above in connection with Eq. 15. The last contribution is

given by ∫
r1dr1dφ1E(r1)

e−i`1φ1

√
2π

g(r1)×
∫
r4dr4dφ4E∗(r4)

ei`2φ4

√
2π

g(r4)× 〈Φ(r1, φ1)Φ∗(r4, φ4)〉

×
∫
r2dr2dφ2E(r2)

e−i`2φ2

√
2π

g(r2)×
∫
r3dr3dφ3E∗(r3)

ei`1φ3

√
2π

g(r3)× 〈Φ(r2, φ2)Φ∗(r3, φ3)〉.
(33)

By invoking the same approximation used above to evaluate the coherence functions as delta functions, we

simplify this expression to ∣∣∣∣∫ rdrdφ |E(r)|2 g(r)2
e−i(`1−`2)φ

2π

∣∣∣∣2 . (34)

Note that the integral over φ vanishes unless `1 = `2. Thus, we finally obtain

〈I`1,`2〉 = 〈I`1〉〈I`2〉(1 + δ`1,`2), (35)

which is the expression used in the body of this paper to explain our experimental results. Note that the

correlations between two different values of OAM are half as large as those between the same value of OAM.

We can perform a similar calculation to find the correlations between two angular positions. For the case
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of a single beam (no beam splitter), the amplitude of the projection for a single value of φ is given by

aφ =

∫
rdrE(r)Φ(r, φ)g(r). (36)

It follows that the ensemble-averaged intensity at one of the detectors is given as follows

〈Iφ〉 = 〈|aφ|2〉 (37)

= 〈
∫
r1dr1E(r1)Φ(r,1 φ)g(r1)×

∫
r2dr2E∗(r2)Φ∗(r2, φ)g(r2)〉 (38)

=

∫
r1dr1r2dr2E(r1)E∗(r2)g(r1)g(r2) 〈Φ(r,1 φ)Φ(r2, φ)∗〉 (39)

=

∫
rdr |E(r)|2 g(r)2. (40)

The last form follows from the substitution 〈Φ(r,1 φ)Φ(r2, φ)∗〉 = (1/r1)δ(r1 − r2). If we now add the beam

splitter and find the probability for coincidence detection of two beams, we obtain

〈Iφ1
Iφ2
〉 =

∫
r1dr1E(r1)g(r1)×

∫
r2dr2E(r2)g(r2) (41)

×
∫
r3dr3E∗(r3)g(r3)×

∫
r4dr4E∗(r4)g(r4)× 〈Φ(r1, φ1)Φ∗(r3, φ3)Φ(r2, φ2)Φ∗(r4, φ4)〉. (42)

Similar to the OAM case, we find that this expression yields two contributions. One of these contributions

is independent of the values φ1 and φ2 whereas the other contribution is large only if the two intensities are

measured at φ1 = φ2. This result can be described by the relation

〈Iφ1
Iφ2
〉 = 〈Iφ1

〉〈Iφ2
〉[1 + δ(φ1 − φ2)]. (43)

As expected, and similar to the case of correlating two OAMs, two non-overlapping angles share no corre-

lation. However, in contrast to the OAM variable, the angular position variable is not discrete, and one is

allowed to correlate two regions defined by two angular positions that are not orthogonal, and consequently

there is a partial overlap between the two correlated regions. Thus the degree of second-order correlation

can take any value between 1 and 2. Therefore an appropriate expression for this correlation function is

given by

〈Iφ1
Iφ2
〉 = 〈Iφ1

〉〈Iφ2
〉[1 + f(φ1 − φ2)], (44)

where f(φ1 − φ2) is defined as

f(φ1 − φ2) =


0 for |φ1 − φ2| > α/2

1− |φ1−φ2|2
α2 for |φ1 − φ2| ≤ α/2.

f(φ1 − φ2) can be interpreted as the fractional angular overlaps of the two slits.
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