159 research outputs found

    Comparison of monocyte and alveolar macrophage antibody-dependent cellular cytotoxicity and Fc-receptor activity

    Full text link
    The cytotoxic potential of rabbit peripheral blood monocytes and alveolar macrophages in antibody-dependent cellular cytotoxicity (ADCC) toward both erythrocyte (RBCox) and tumor cell (CEM T-lymphoblast) targets was examined. ADCC was measured in a 4-hr 51Cr-release assay. Alveolar macrophages were more efficient at killing the tumor cell targets (optimally sensitized with rabbit antisera) than monocytes at similar effector cell/target cell (E/T) ratios. Tumor cell targets sensitized with seven different antisera (anti-CEM) were lysed by alveolar macrophages but not by the monocytes. In marked contrast, the monocytes were more effective at lysing the sensitized erythrocyte target cells. The degree of cytolysis of RBCox and CEM was dependent on the E/T ratio and the degree of sensitization of these target cells. It was demonstrated that the effector cell selectivity in ADCC was directly related to their ability or inability to bind the sensitized target cells as determined by Fc-receptor rosette formation. The transition from monocyte to macrophage may, therefore, have resulted in an alteration in the criteria necessary for Fc-receptor binding to antibody-sensitized target cells and subsequent ADCC.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24214/1/0000473.pd

    Randomized trial of radiotherapy versus radiotherapy plus metronidazole for the treatment metastatic cancer to brain

    Full text link
    One hundred sixteen eligible patients with metastatic cancer to the brain were randomized to receive either radiotherapy 3000 rad/ 10 fractions (treatment 1) or the same radiotherapy plus metronidazole 6 gm/m 2 (treatment 2). One hundred eleven patients were either fully or partially evaluable. The response rates (CR + PR) and survival showed no significant differences between treatments. Treatment 1: CR + PR 24%, median survival 14 weeks, Treatment 2: CR + PR 27%, median survival 12 weeks. There were no differences observed in response rates based on primary tumor site, neurologic performance status, or extent of metastatic disease. Metronidazole therapy was associated with substantial nausea and vomiting but no neurotoxicity was observed. Oral metronidazole given every other day during radiation therapy provided no clinical benefit for patients with brain metastases compared to radiotherapy alone.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45380/1/11060_2004_Article_BF00178115.pd

    Combining Substrate Specificity Analysis with Support Vector Classifiers Reveals Feruloyl Esterase as a Phylogenetically Informative Protein Group

    Get PDF
    Our understanding of how fungi evolved to develop a variety of ecological niches, is limited but of fundamental biological importance. Specifically, the evolution of enzymes affects how well species can adapt to new environmental conditions. Feruloyl esterases (FAEs) are enzymes able to hydrolyze the ester bonds linking ferulic acid to plant cell wall polysaccharides. The diversity of substrate specificities found in the FAE family shows that this family is old enough to have experienced the emergence and loss of many activities. In this study we evaluate the relative activity of FAEs against a variety of model substrates as a novel predictive tool for Ascomycota taxonomic classification. Our approach consists of two analytical steps; (1) an initial unsupervised analysis to cluster the FAEs substrate specificity data which were generated by cultivation of 34 Ascomycota strains and then an analysis of the produced enzyme cocktail against 10 substituted cinnamate and phenylalkanoate methyl esters, (2) a second, supervised analysis for training a predictor built on these substrate activities. By applying both linear and non-linear models we were able to correctly predict the taxonomic Class (∼86% correct classification), Order (∼88% correct classification) and Family (∼88% correct classification) that the 34 Ascomycota belong to, using the activity profiles of the FAEs. The good correlation with the FAEs substrate specificities that we have defined via our phylogenetic analysis not only suggests that FAEs are phylogenetically informative proteins but it is also a considerable step towards improved FAEs functional prediction.published_or_final_versio

    Cellular Model of Warburg Effect Identifies Tumor Promoting Function of UCP2 in Breast Cancer and Its Suppression by Genipin

    Get PDF
    The Warburg Effect is characterized by an irreversible injury to mitochondrial oxidative phosphorylation (OXPHOS) and an increased rate of aerobic glycolysis. In this study, we utilized a breast epithelial cell line lacking mitochondrial DNA (rho0) that exhibits the Warburg Effect associated with breast cancer. We developed a MitoExpress array for rapid analysis of all known nuclear genes encoding the mitochondrial proteome. The gene-expression pattern was compared among a normal breast epithelial cell line, its rho0 derivative, breast cancer cell lines and primary breast tumors. Among several genes, our study revealed that over-expression of mitochondrial uncoupling protein UCP2 in rho0 breast epithelial cells reflects gene expression changes in breast cancer cell lines and in primary breast tumors. Furthermore, over-expression of UCP2 was also found in leukemia, ovarian, bladder, esophagus, testicular, colorectal, kidney, pancreatic, lung and prostate tumors. Ectopic expression of UCP2 in MCF7 breast cancer cells led to a decreased mitochondrial membrane potential and increased tumorigenic properties as measured by cell migration, in vitro invasion and anchorage independent growth. Consistent with in vitro studies, we demonstrate that UCP2 over-expression leads to development of tumors in vivo in an orthotopic model of breast cancer. Genipin, a plant derived small molecule, suppressed the UCP2 led tumorigenic properties, which were mediated by decreased reactive oxygen species and down-regulation of UCP2. However, UCP1, 3, 4 and 5 gene expression was unaffected. UCP2 transcription was controlled by SMAD4. Together, these studies suggest a tumor-promoting function of UCP2 in breast cancer. In summary, our studies demonstrate that i) the Warburg Effect is mediated by UCP2; ii) UCP2 is over-expressed in breast and many other cancers; iii) UCP2 promotes tumorigenic properties in vitro and in vivo and iv) genipin suppresses the tumor promoting function of UCP2

    Development of a Humanized Antibody with High Therapeutic Potential against Dengue Virus Type 2

    Get PDF
    Dengue virus (DENV) infection remains a serious health threat despite the availability of supportive care in modern medicine. Monoclonal antibodies (mAbs) of DENV would be powerful research tools for antiviral development, diagnosis and pathological investigations. Here we described generation and characterization of seventeen mAbs with high reactivity for E protein of DENV. Four of these mAbs showed high neutralizing activity against DENV-2 infection in mice. The monoclonal antibody mAb DB32-6 showed the strongest neutralizing activity against diverse DENV-2 and protected DENV-2-infected mice against mortality in therapeutic models. We identified neutralizing epitopes of DENV located at residues K310 and E311 of viral envelope protein domain III (E-DIII) through the combination of biological and molecular strategies. Comparing the strong neutralizing activity of mAbs targeting A-strand with mAbs targeting lateral ridge, we found that epitopes located in A-strand induced stronger neutralizing activity than those located on the lateral ridge. DB32-6 humanized version was successfully developed. Humanized DB32-6 variant retained neutralizing activity and prevented DENV infection. Understanding the epitope-based antibody-mediated neutralization is crucial to controlling dengue infection. Additionally, this study also introduces a novel humanized mAb as a candidate for therapy of dengue patients

    Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum

    Get PDF
    Background: Many species belonging to the genus Colletotrichum cause anthracnose disease on a wide range of plant species. In addition to their economic impact, the genus Colletotrichum is a useful model for the study of the evolution of host specificity, speciation and reproductive behaviors. Genome projects of Colletotrichum species have already opened a new era for studying the evolution of pathogenesis in fungi. Results: We sequenced and annotated the genomes of four strains in the Colletotrichum acutatum species complex (CAsc), a clade of broad host range pathogens within the genus. The four CAsc proteomes and secretomes along with those representing an additional 13 species (six Colletotrichum spp. and seven other Sordariomycetes) were classified into protein families using a variety of tools. Hierarchical clustering of gene family and functional domain assignments, and phylogenetic analyses revealed lineage specific losses of carbohydrate-active enzymes (CAZymes) and proteases encoding genes in Colletotrichum species that have narrow host range as well as duplications of these families in the CAsc. We also found a lineage specific expansion of necrosis and ethylene-inducing peptide 1 (Nep1)-like protein (NLPs) families within the CAsc. Conclusions: This study illustrates the plasticity of Colletotrichum genomes, and shows that major changes in host range are associated with relatively recent changes in gene content

    Teaching a Prisoner to Fish: Getting Tough on Crime by Preparing Prisoners to Reenter Society

    Full text link
    • …
    corecore