27 research outputs found

    Pseudomonas aeruginosa LptE is crucial for LptD assembly, cell envelope integrity, antibiotic resistance and virulence

    Get PDF
    Lipopolysaccharide (LPS) is an essential structural component of the outer membrane (OM) of most Gram-negative bacteria. In the model organism Escherichia coli, LPS transport to the OM requires seven essential proteins (LptABCDEFG) that form a continuous bridge across the cell envelope. In Pseudomonas aeruginosa the recently-demonstrated essentiality of LptD and LptH, the P. aeruginosa LptA homologue, confirmed the crucial role of the Lpt system and, thus, of LPS in OM biogenesis in this species. Surprisingly, independent high-throughput transposon mutagenesis studies identified viable P. aeruginosa insertion mutants in the lptE gene, suggesting that it might be dispensable for bacterial growth. To test this hypothesis, we generated an lptE conditional mutant in P. aeruginosa PAO1. LptE depletion only slightly impairs P. aeruginosa growth in vitro. Conversely, LptE is important for cell envelope stability, antibiotic resistance and virulence in an insect model. Interestingly, the maturation and OM localization of LPS is only marginally affected in LptE-depleted cells, while the levels of the OM component LptD are strongly reduced. This suggests that P. aeruginosa LptE might not be directly involved in LPS transport, although it is clearly essential for the maturation and/or stability of LptD. While poor functionality of LptD caused by LptE depletion is somehow tolerated by P. aeruginosa, this has a high cost in terms of cell integrity, drug resistance and virulence, highlighting LptE function(s) as an interesting target to weaken P. aeruginosa defenses and reduce its infectivity

    In vitro and in vivo screening for novel essential cell-envelope proteins in Pseudomonas aeruginosa

    Get PDF
    The Gram-negative bacterium Pseudomonas aeruginosa represents a prototype of multi-drug resistant opportunistic pathogens for which novel therapeutic options are urgently required. In order to identify new candidates as potential drug targets, we combined large-scale transposon mutagenesis data analysis and bioinformatics predictions to retrieve a set of putative essential genes which are conserved in P. aeruginosa and predicted to encode cell envelope or secreted proteins. By generating unmarked deletion or conditional mutants, we confirmed the in vitro essentiality of two periplasmic proteins, LptH and LolA, responsible for lipopolysaccharide and lipoproteins transport to the outer membrane respectively, and confirmed that they are important for cell envelope stability. LptH was also found to be essential for P. aeruginosa ability to cause infection in different animal models. Conversely, LolA-depleted cells appeared only partially impaired in pathogenicity, indicating that this protein likely plays a less relevant role during bacterial infection. Finally, we ruled out any involvement of the other six proteins under investigation in P. aeruginosa growth, cell envelope stability and virulence. Besides proposing LptH as a very promising drug target in P. aeruginosa, this study confirms the importance of in vitro and in vivo validation of potential essential genes identified through random transposon mutagenesis

    Ferric uptake regulator Fur is conditionally essential in Pseudomonas aeruginosa

    Get PDF
    In Pseudomonas aeruginosa, the ferric uptake regulator (Fur) protein controls both metabolism and virulence in response to iron availability. Differently from other bacteria, attempts to obtain fur deletion mutants of P. aeruginosa failed, leading to the assumption that Fur is an essential protein in this bacterium. By investigating a P. aeruginosa conditional fur mutant, we demonstrate that Fur is not essential for P. aeruginosa growth in liquid media, biofilm formation, and pathogenicity in an insect model of infection. Conversely, Fur is essential for growth on solid media since Fur-depleted cells are severely impaired in colony formation. Transposon-mediated random mutagenesis experiments identified pyochelin siderophore biosynthesis as a major cause of the colony growth defect of the conditional fur mutant, and deletion mutagenesis confirmed this evidence. Impaired colony growth of pyochelin-proficient Fur-depleted cells does not depend on oxidative stress, since Fur-depleted cells do not accumulate higher levels of reactive oxygen species (ROS) and are not rescued by antioxidant agents or overexpression of ROS-detoxifying enzymes. Ectopic expression of pch genes revealed that pyochelin production has no inhibitory effects on a fur deletion mutant of Pseudomonas syringae pv. tabaci, suggesting that the toxicity of the pch locus in Fur-depleted cells involves a P. aeruginosa-specific pathway(s)

    Aminoarabinosylation of lipid A is critical for the development of colistin resistance in Pseudomonas aeruginosa

    Get PDF
    Lipid A aminoarabinosylation is invariably associated with colistin resistance inPseudomonas aeruginosa; however, the existence of alternative, aminoarabinosylation-independent colistin resistance mechanisms in this bacterium remained elusive. By combining reverse genetics with experimental evolution assays we demonstrate that a functional lipid A aminoarabinosylation pathway is critical for acquisition of colistin resistance in reference and clinicalP. aeruginosaisolates. This highlights lipid A aminoarabinosylation as a promising target for the design of colistin adjuvants againstP. aeruginosa

    Regulatory Landscape of the <i>Pseudomonas aeruginosa</i> Phosphoethanolamine Transferase Gene <i>eptA</i> in the Context of Colistin Resistance

    No full text
    Pseudomonas aeruginosa has the genetic potential to acquire colistin resistance through the modification of lipopolysaccharide by the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) or phosphoethanolamine (PEtN), mediated by the arn operon or the eptA gene, respectively. However, in vitro evolution experiments and genetic analysis of clinical isolates indicate that lipopolysaccharide modification with L-Ara4N is invariably preferred over PEtN addition as the colistin resistance mechanism in this bacterium. Since little is known about eptA regulation in P. aeruginosa, we generated luminescent derivatives of the reference strain P. aeruginosa PAO1 to monitor arn and eptA promoter activity. We performed transposon mutagenesis assays to compare the likelihood of acquiring mutations leading to arn or eptA induction and to identify eptA regulators. The analysis revealed that eptA was slightly induced under certain stress conditions, such as arginine or biotin depletion and accumulation of the signal molecule diadenosine tetraphosphate, but the induction did not confer colistin resistance. Moreover, we demonstrated that spontaneous mutations leading to colistin resistance invariably triggered arn rather than eptA expression, and that eptA was not induced in resistant mutants upon colistin exposure. Overall, these results suggest that the contribution of eptA to colistin resistance in P. aeruginosa may be limited by regulatory restraints

    Regulatory Landscape of the Pseudomonas aeruginosa Phosphoethanolamine Transferase Gene eptA in the Context of Colistin Resistance

    No full text
    Pseudomonas aeruginosa has the genetic potential to acquire colistin resistance through the modification of lipopolysaccharide by the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) or phosphoethanolamine (PEtN), mediated by the arn operon or the eptA gene, respectively. However, in vitro evolution experiments and genetic analysis of clinical isolates indicate that lipopolysaccharide modification with L-Ara4N is invariably preferred over PEtN addition as the colistin resistance mechanism in this bacterium. Since little is known about eptA regulation in P. aeruginosa, we generated luminescent derivatives of the reference strain P. aeruginosa PAO1 to monitor arn and eptA promoter activity. We performed transposon mutagenesis assays to compare the likelihood of acquiring mutations leading to arn or eptA induction and to identify eptA regulators. The analysis revealed that eptA was slightly induced under certain stress conditions, such as arginine or biotin depletion and accumulation of the signal molecule diadenosine tetraphosphate, but the induction did not confer colistin resistance. Moreover, we demonstrated that spontaneous mutations leading to colistin resistance invariably triggered arn rather than eptA expression, and that eptA was not induced in resistant mutants upon colistin exposure. Overall, these results suggest that the contribution of eptA to colistin resistance in P. aeruginosa may be limited by regulatory restraints

    Generation of Stable and Unmarked Conditional Mutants in Pseudomonas aeruginosa

    No full text
    The functional and physiological characterization of bacterial genes required for growth and/or cell survival is limited by the inability to generate deletion mutants lacking the specific gene of interest. This limitation can be circumvented by generating conditional mutants in which the loss of the endogenous copy of the gene is compensated by the introduction of the wild-type allele under the control of an inducible promoter, which allows for tightly regulated expression of the gene of interest. Besides the confirmation and/or functional investigation of essential genes, conditional mutants can also be useful to investigate the effect of finely controlled expression of nonessential genes. In this chapter, we describe a method that can be used to generate stable and unmarked conditional mutants in Pseudomonas aeruginosa

    RecA and Specialized Error-Prone DNA Polymerases Are Not Required for Mutagenesis and Antibiotic Resistance Induced by Fluoroquinolones in <i>Pseudomonas aeruginosa</i>

    No full text
    To cope with stressful conditions, including antibiotic exposure, bacteria activate the SOS response, a pathway that induces error-prone DNA repair and mutagenesis mechanisms. In most bacteria, the SOS response relies on the transcriptional repressor LexA and the co-protease RecA, the latter being also involved in homologous recombination. The role of the SOS response in stress- and antibiotic-induced mutagenesis has been characterized in detail in the model organism Escherichia coli. However, its effect on antibiotic resistance in the human pathogen Pseudomonas aeruginosa is less clear. Here, we analyzed a recA deletion mutant and confirmed, by conjugation and gene expression assays, that RecA is required for homologous recombination and SOS response induction in P. aeruginosa. MIC assays demonstrated that RecA affects P. aeruginosa resistance only towards fluoroquinolones and genotoxic agents. The comparison of antibiotic-resistant mutant frequency between treated and untreated cultures revealed that, among the antibiotics tested, only fluoroquinolones induced mutagenesis in P. aeruginosa. Notably, both RecA and error-prone DNA polymerases were found to be dispensable for this process. These data demonstrate that the SOS response is not required for antibiotic-induced mutagenesis in P. aeruginosa, suggesting that RecA inhibition is not a suitable strategy to target antibiotic-induced emergence of resistance in this pathogen

    Genetic Basis and Physiological Effects of Lipid A Hydroxylation in Pseudomonas aeruginosa PAO1

    No full text
    Modifications of the lipid A moiety of lipopolysaccharide influence the physicochemical properties of the outer membrane of Gram-negative bacteria. Some bacteria produce lipid A with a single hydroxylated secondary acyl chain. This hydroxylation is catalyzed by the dioxygenase LpxO, and is important for resistance to cationic antimicrobial peptides (e.g., polymyxins), survival in human blood, and pathogenicity in animal models. The lipid A of the human pathogen Pseudomonas aeruginosa can be hydroxylated in both secondary acyl chains, but the genetic basis and physiological role of these hydroxylations are still unknown. Through the generation of single and double deletion mutants in the lpxO1 and lpxO2 homologs of P. aeruginosa PAO1 and lipid A analysis by mass spectrometry, we demonstrate that both LpxO1 and LpxO2 are responsible for lipid A hydroxylation, likely acting on different secondary acyl chains. Lipid A hydroxylation does not appear to affect in vitro growth, cell wall stability, and resistance to human blood or antibiotics in P. aeruginosa. In contrast, it is required for infectivity in the Galleria mellonella infection model, without relevantly affecting in vivo persistence. Overall, these findings suggest a role for lipid A hydroxylation in P. aeruginosa virulence that could not be directly related to outer membrane integrity
    corecore