15 research outputs found
A tablet-based quantitative assessment of manual dexterity for detection of early psychosis
BackgroundWe performed a pilot study on whether tablet-based measures of manual dexterity can provide behavioral markers for detection of first-episode psychosis (FEP), and whether cortical excitability/inhibition was altered in FEP.MethodsBehavioral and neurophysiological testing was undertaken in persons diagnosed with FEP (Nâ=â20), schizophrenia (SCZ, Nâ=â20), autism spectrum disorder (ASD, Nâ=â20), and in healthy control subjects (Nâ=â20). Five tablet tasks assessed different motor and cognitive functions: Finger Recognition for effector (finger) selection and mental rotation, Rhythm Tapping for temporal control, Sequence Tapping for control/memorization of motor sequences, Multi Finger Tapping for finger individuation, and Line Tracking for visuomotor control. Discrimination of FEP (from other groups) based on tablet-based measures was compared to discrimination through clinical neurological soft signs (NSS). Cortical excitability/inhibition, and cerebellar brain inhibition were assessed with transcranial magnetic stimulation.ResultsCompared to controls, FEP patients showed slower reaction times and higher errors in Finger Recognition, and more variability in Rhythm Tapping. Variability in Rhythm Tapping showed highest specificity for the identification of FEP patients compared to all other groups (FEP vs. ASD/SCZ/Controls; 75% sensitivity, 90% specificity, AUCâ=â0.83) compared to clinical NSS (95% sensitivity, 22% specificity, AUCâ=â0.49). Random Forest analysis confirmed FEP discrimination vs. other groups based on dexterity variables (100% sensitivity, 85% specificity, balanced accuracyâ=â92%). The FEP group had reduced short-latency intra-cortical inhibition (but similar excitability) compared to controls, SCZ, and ASD. Cerebellar inhibition showed a non-significant tendency to be weaker in FEP.ConclusionFEP patients show a distinctive pattern of dexterity impairments and weaker cortical inhibition. Easy-to-use tablet-based measures of manual dexterity capture neurological deficits in FEP and are promising markers for detection of FEP in clinical practice
The global patient-reported outcomes for multiple sclerosis initiative: bridging the gap between clinical research and care â updates at the 2023 plenary event
Significant advancements have been achieved in delineating the progress of the Global PROMS (PROMS) Initiative. The PROMS Initiative, a collaborative endeavor by the European Charcot Foundation and the Multiple Sclerosis International Federation, strives to amplify the influence of patient input on MS care and establish a cohesive perspective on Patient-Reported Outcomes (PROs) for diverse stakeholders. This initiative has established an expansive, participatory governance framework launching four dedicated working groups that have made substantive contributions to research, clinical management, eHealth, and healthcare system reform. The initiative prioritizes the global integration of patient (For the purposes of the Global PROMS Initiative, the term âpatientâ refers to the people with the disease (aka People with Multiple Sclerosis â pwMS): any individual with lived experience of the disease. People affected by the disease/Multiple Sclerosis: any individual or group that is affected by the disease: E.g., family members, caregivers will be also engaged as the other stakeholders in the initiative). insights into the management of MS care. It merges subjective PROs with objective clinical metrics, thereby addressing the complex variability of disease presentation and progression. Following the completion of its second phase, the initiative aims to help increasing the uptake of eHealth tools and passive PROs within research and clinical settings, affirming its unwavering dedication to the progressive refinement of MS care. Looking forward, the initiative is poised to continue enhancing global surveys, rethinking to the relevant statistical approaches in clinical trials, and cultivating a unified stance among âindustryâ, regulatory bodies and health policy making regarding the application of PROs in MS healthcare strategies
VALIDITY, INTRA-RATER RELIABILITY AND NORMATIVE DATA OF THE NEUROFLEXORâą DEVICE TO MEASURE SPASTICITY OF THE ANKLE PLANTAR FLEXORS AFTER STROKE
International audienceObjective: Quantification of lower limb spasticity after stroke and the differentiation of neural from passive muscle resistance remain key clinical challenges. The aim of this study was to validate the novel NeuroFlexor foot module, to assess the intrarater reliability of measurements and to identify normative cut-off values.Methods: Fifteen patients with chronic stroke with clinical history of spasticity and 18 healthy subjects were examined with the NeuroFlexor foot module at controlled velocities. Elastic, viscous and neural components of passive dorsiflexion resistance were quantified (in Newton, N). The neural component, reflecting stretch reflex mediated resistance, was validated against electromyography activity. A test-retest design with a 2-way random effects model permitted study of intra-rater reliability. Finally, data from 73 healthy subjects were used to establish cutoff values according to mean + 3 standard deviations and receiver operating characteristic curve analysis.Results: The neural component was higher in stroke patients, increased with stretch velocity and correlated with electromyography amplitude. Reliability was high for the neural component (intraclass correlation coefficient model 2.1 (ICC2,1) â„ 0.903) and good for the elastic component (ICC2,1 â„ 0.898). Cutoff values were identified, and all patients with neural component above the limit presented pathological electromyography amplitude (area under the curve (AUC) = 1.00, sensitivity = 100%, specificity = 100%).Conclusion: The NeuroFlexor may offer a clinically feasible and non-invasive way to objectively quantify lower limb spasticity. LAY ABSTRACTSpasticity is a sensorimotor impairment, which often occurs after stroke as well as after other injuries to the central nervous system. Spasticity is characterized by increased resistance to passive stretch of weak muscles due to increased reflex activity. Spasticity is currently measured clinically while the examiner passively stretches a muscle. However, the clinical method cannot differentiate resistance due to increased reflex activity from resistance due to muscle stiffness, which can develop over time in weakened muscles. The aim of this study was to evaluate the novel NeuroFlexor foot module, which was developed to quantify and distinguish nerve and muscle components of resistance during passive stretching of the lower limb muscles. By quantifying these factors, one can obtain more reliable information than the clinical examination allows. NeuroFlexor measurements in 15 patients in the chronic stage after stroke and 18 healthy individuals allowed the validity of the method to be evaluated by assessing the relationship with velocity of stretch and by simultaneously examining the reflex activity using surface electromyography. The reliability of NeuroFlexor measurements was studied by comparing repeated measurements. Finally, the study established normal NeuroFlexor values from 73 healthy individuals. The results suggest that the NeuroFlexor foot module may be a valid, reliable and easy-to-use objective method to quantify lower limb spasticity
Effects of 60 Min Electrostimulation With the EXOPULSE Mollii Suit on Objective Signs of Spasticity
International audienceBackground: The EXOPULSE Mollii method is an innovative full-body suit approach for non-invasive electrical stimulation, primarily designed to reduce disabling spasticity and improve motor function through the mechanism of reciprocal inhibition. This study aimed to evaluate the effectiveness of one session of stimulation with the EXOPULSE Mollii suit at different stimulation frequencies on objective signs of spasticity and clinical measures, and the subjective perceptions of the intervention. Methods: Twenty patients in the chronic phase after stroke were enrolled in a cross-over, double-blind controlled study. Electrical stimulation delivered through EXOPULSE Mollii was applied for 60 min at two active frequencies (20 and 30 Hz) and in OFF-settings (placebo) in a randomized order, every second day. Spasticity was assessed with controlled-velocity passive muscle stretches using the NeuroFlexor hand and foot modules. Surface electromyography (EMG) for characterizing flexor carpi radialis, medial gastrocnemius, and soleus muscles activation, Modified Ashworth Scale and range of motion were used as complementary tests. Finally, a questionnaire was used to assess the participants' perceptions of using the EXOPULSE Mollii suit. Results: At group level, analyses showed no significant effect of stimulation at any frequency on NeuroFlexor neural component (NC) and EMG amplitude in the upper or lower extremities (p > 0.35). Nevertheless, the effect was highly variable at the individual level, with eight patients exhibiting reduced NC (>1 N) in the upper extremity after stimulation at 30 Hz, 5 at 20 Hz and 3 in OFF settings. All these patients presented severe spasticity at baseline, i.e., NC > 8 N. Modified Ashworth ratings of spasticity and range of motion did not change significantly after stimulation at any frequency. Finally, 75% of participants reported an overall feeling of well-being during stimulation, with 25% patients describing a muscle-relaxing effect on the affected hand and/or foot at both 20 and 30 Hz. Conclusions: The 60 min of electrical stimulation with EXOPULSE Mollii suit did not reduce spasticity consistently in the upper and lower extremities in the chronic phase after stroke. Findings suggest a need for further studies in patients with severe spasticity after stroke including repeated stimulation sessions. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT04076878, identifier: NCT04076878
Does dystonic muscle activity affect sense of effort in cervical dystonia?
BACKGROUND:Focal dystonia has been associated with deficient processing of sense of effort cues. However, corresponding studies are lacking in cervical dystonia (CD). We hypothesized that dystonic muscle activity would perturb neck force control based on sense of effort cues. METHODS:Neck extension force control was investigated in 18 CD patients with different clinical features (7 with and 11 without retrocollis) and in 19 control subjects. Subjects performed force-matching and force-maintaining tasks at 5% and 20% of maximum voluntary contraction (MVC). Three task conditions were tested: i) with visual force feedback, ii) without visual feedback (requiring use of sense of effort), iii) without visual feedback, but with neck extensor muscle vibration (modifying muscle afferent cues). Trapezius muscle activity was recorded using electromyography (EMG). RESULTS:CD patients did not differ in task performance from healthy subjects when using visual feedback (ANOVA, p>0.7). In contrast, when relying on sense of effort cues (without visual feedback, 5% MVC), force control was impaired in patients without retrocollis (p = 0.006), but not in patients with retrocollis (p>0.2). Compared to controls, muscle vibration without visual feedback significantly affected performance in patients with retrocollis (p<0.001), but not in patients without retrocollis. Extensor EMG during rest, included as covariate in ANOVA, explained these group differences. CONCLUSION:This study shows that muscle afferent feedback biases sense of effort cues when controlling neck forces in patients with CD. The bias acts on peripheral or central sense of effort cues depending on whether the task involves dystonic muscles. This may explain why patients with retrocollis more accurately matched isometric neck extension forces. This highlights the need to consider clinical features (pattern of dystonic muscles) when evaluating sensorimotor integration in CD
Recovery and Prediction of Dynamic Precision Grip Force Control After Stroke
International audienceBackground and Purpose- Dexterous object manipulation, requiring generation and control of finger forces, is often impaired after stroke. This study aimed to describe recovery of precision grip force control after stroke and to determine clinical and imaging predictors of 6-month performance. Methods- Eighty first-ever stroke patients with varying degrees of upper limb weakness were evaluated at 3 weeks, 3 months, and 6 months after stroke. Twenty-three healthy individuals of comparable age were also studied. The Strength-Dexterity test was used to quantify index finger and thumb forces during compression of springs of varying length in a precision grip. The coordination between finger forces (CorrForce), along with Dexterity-score and Repeatability-score, was calculated. Anatomical magnetic resonance imaging was used to calculate weighted corticospinal tract lesion load (wCST-LL). Results- CorrForce, Dexterity-score, and Repeatability-score in the affected hand were dramatically lower at each time point compared with the less-affected hand and the control group, even in patients with mild motor impairment according to Fugl-Meyer assessment. Improved performance over time occurred in CorrForce and Dexterity-score but not in Repeatability-score. The Fugl-Meyer assessment hand subscale, sensory function, and wCST-LL best predicted CorrForce and Dexterity-score status at 6 months (R2=0.56 and 0.87, respectively). wCST-LL explained substantial variance in CorrForce (R2=0.34) and Dexterity-score (R2=0.50) at 6 months; two-point discrimination and Fugl-Meyer score accounted for considerable additional variance. Absence of recovery in CorrForce was predicted by wCST-LL >4 cc and in Dexterity-score by wCST-LL >6 cc. Conclusions- Findings highlight persisting deficits in the ability to grasp and control finger forces after stroke. wCST-LL was the strongest predictor of performance at 6 months, but early two-point discrimination and Fugl-Meyer score had substantial additional predictive value
Neural noise and cortical inhibition in schizophrenia
International audienceBackgroundNeural information processing is subject to noise and this leads to variability in neural firing and behavior. Schizophrenia has been associated with both more variable motor control and impaired cortical inhibition, which is crucial for excitatory/inhibitory balance in neural commands.HypothesisIn this study, we hypothesized that impaired intracortical inhibition in motor cortex would contribute to task-related motor noise in schizophrenia.MethodsWe measured variability of force and of electromyographic (EMG) activity in upper limb and hand muscles during a visuomotor grip force-tracking paradigm in patients with schizophrenia (N = 25), in unaffected siblings (N = 17) and in healthy control participants (N = 25). Task-dependent primary motor cortex (M1) excitability and inhibition were assessed using transcranial magnetic stimulation (TMS).ResultsDuring force maintenance patients with schizophrenia showed increased variability in force and EMG, despite similar mean force and EMG magnitudes. Compared to healthy controls, patients with schizophrenia also showed increased M1 excitability and reduced cortical inhibition during grip-force tracking. EMG variability and force variability correlated negatively to cortical inhibition in patients with schizophrenia. EMG variability also correlated positively to negative symptoms. Siblings had similar variability and cortical inhibition compared to controls. Increased EMG and force variability indicate enhanced motor noise in schizophrenia, which relates to reduced motor cortex inhibition.ConclusionThe findings suggest that excessive motor noise in schizophrenia may arise from an imbalance of M1 excitation/inhibition of GABAergic origin. Thus, higher motor noise may provide a useful marker of impaired cortical inhibition in schizophrenia
Common vs. Distinct Visuomotor Control Deficits in Autism Spectrum Disorder and Schizophrenia
International audienceAutism spectrum disorder (ASD) and schizophrenia (SCZ) are neurodevelopmental disorders with partly overlapping clinical phenotypes including sensorimotor impairments. However, direct comparative studies on sensorimotor control across these two disorders are lacking. We set out to compare visuomotor upper limb impairment, quantitatively, in ASD and SCZ. Patients with ASD (N = 24) were compared to previously published data from healthy control participants (N = 24) and patients with SCZ (N = 24). All participants performed a visuomotor grip force-tracking task in single and dual-task conditions. The dual-task (high cognitive load) presented either visual distractors or required mental addition during grip force-tracking. Motor inhibition was measured by duration of force release and from principal component analysis (PCA) of the participant's force-trajectory. Common impairments in patients with ASD and SCZ included increased force-tracking error in single-task condition compared to controls, a further increase in error in dual-task conditions, and prolonged duration of force release. These three sensorimotor impairments were found in both patient groups. In contrast, distinct impairments in patients with ASD included greater error under high cognitive load and delayed onset of force release compared to SCZ. The PCA inhibition component was higher in ASD than SCZ and controls, correlated to duration of force release, and explained group differences in tracking error. In conclusion, sensorimotor impairments related to motor inhibition are common to ASD and SCZ, but more severe in ASD, consistent with enhanced neurodevelopmental load in ASD. Furthermore, impaired motor anticipation may represent a further specific impairment in ASD. LAY SUMMARY: Autism spectrum disorder (ASD) and schizophrenia (SCZ) are neurodevelopmental disorders with partly overlapping and partly distinct clinical symptoms. Sensorimotor impairments rank among these symptoms, but it is less clear whether they are shared or distinct. In this study, we showed using a grip force task that sensorimotor impairments related to motor inhibition are common to ASD and SCZ, but more severe in ASD. Impaired motor anticipation may represent a further specific impairment in ASD
A novel tablet-based application for assessment of manual dexterity and its components: a reliability and validity study in healthy subjects
International audienceBackground: We developed five tablet-based tasks (applications) to measure multiple components of manual dexterity.Aim: to test reliability and validity of tablet-based dexterity measures in healthy participants.Methods: Tasks included: (1) Finger recognition to assess mental rotation capacity. The subject taps with the finger indicated on a virtual hand in three orientations (reaction time, correct trials). (2) Rhythm tapping to evaluate timing of finger movements performed with, and subsequently without, an auditory cue (inter-stimulus interval). (3) Multi-finger tapping to assess independent finger movements (reaction time, correct trials, unwanted finger movements). (4) Sequence tapping to assess production and memorization of visually cued finger sequences (successful taps). (5) Line-tracking to assess movement speed and accuracy while tracking an unpredictably moving line on the screen with the fingertip (duration, error). To study inter-rater reliability, 34 healthy subjects (mean age 35 years) performed the tablet tasks twice with two raters. Relative reliability (Intra-class correlation, ICC) and absolute reliability (Standard error of measurement, SEM) were established. Task validity was evaluated in 54 healthy subjects (mean age 49 years, range: 20-78 years) by correlating tablet measures with age, clinical dexterity assessments (time taken to pick-up objects in Box and Block Test, BBT and Moberg Pick Up Test, MPUT) and with measures obtained using a finger force-sensor device.Results: Most timing measures showed excellent reliability. Poor to excellent reliability was found for correct trials across tasks, and reliability was poor for unwanted movements. Inter-session learning occurred in some measures. Age correlated with slower and more variable reaction times in finger recognition, less correct trials in multi-finger tapping, and slower line-tracking. Reaction times correlated with those obtained using a finger force-sensor device. No significant correlations between tablet measures and BBT or MPUT were found. Inter-task correlation among tablet-derived measures was weak.Conclusions: Most tablet-based dexterity measures showed good-to-excellent reliability (ICC â„ 0.60) except for unwanted movements during multi-finger tapping. Age-related decline in performance and association with finger force-sensor measures support validity of tablet measures. Tablet-based components of dexterity complement conventional clinical dexterity assessments. Future work is required to establish measurement properties in patients with neurological and psychiatric disorders