41 research outputs found

    Discrete-time differentiators in closed-loop control systems: experiments on electro-pneumatic system and rotary inverted pendulum

    Get PDF
    This paper is dedicated to the experimental analysis of discrete-time differentiators implemented in closed-loop control systems. To this end, two laboratory setups, namely an electro-pneumatic system and a rotary inverted pendulum have been used to implement 25 different differentiators. Since the selected laboratory setups behave differently in the case of dynamic response and noise characteristics, it is expected that the results remain valid for a wide range of control applications. The validity of several theoretical results, which have been already reported in the literature using mathematical analysis and numerical simulations, has been investigated, and several comments are provided to allow one to select an appropriate differentiation scheme in practical closed-loop control systems

    Reactor Pulse Operation for Nuclear Instrumentation Detector Testing – Preparation of a Dedicated Experimental Campaign at the JSI TRIGA Reactor

    No full text
    The availability of neutron fields with a high neutron flux, suitable for irradiation testing of nuclear instrumentation detectors relevant for applications in nuclear facilities such as material testing reactors (MTRs), nuclear power reactors and future fusion reactors is becoming increasingly limited. Over the last several years there has been increased interest in the experimental capabilities of the 250 kW Jožef Stefan Institute (JSI) TRIGA research reactor for such applications, however, the maximal achievable neutron flux in steady-state operation mode falls short of MTR-relevant conditions. The JSI TRIGA reactor can also operate in pulse mode, with a maximal achievable peak power of approximately 1 GW, for a duration of a few ms. A collaboration project between the JSI and the French Atomic and Alternative Energy Commission (CEA) was initiated to investigate absolute neutron flux measurements at very high neutron flux levels in reactor pulse operation. Such measurements will be made possible by special CEA-developed miniature fission chambers and modern data acquisition systems, supported by the JSI TRIGA instrumentation and activation dosimetry. Additionally, measurements of the intensity of Cherenkov light are proposed and being investigated as an alternative experimental method. This paper presents the preparatory activities for an exhaustive experimental campaign, which were carried out in 2019-2020, consisting of test measurements with not fully appropriate fission chambers, activation dosimetry and silicon photomultipliers (SiPMs) The presented results provide useful and promising experimental indications relevant for the design of the experimental campaign

    The Self-Powered Detector Simulation ‘MATiSSe’ Toolbox applied to SPNDs for severe accident monitoring in PWRs

    No full text
    In the framework of the French National Research Agency program on nuclear safety and radioprotection, the ‘DIstributed Sensing for COrium Monitoring and Safety’ project aims at developing innovative instrumentation for corium monitoring in case of severe accident in a Pressurized Water nuclear Reactor. Among others, a new under-vessel instrumentation based on Self-Powered Neutron Detectors is developed using a numerical simulation toolbox, named ‘MATiSSe’. The CEA Instrumentation Sensors and Dosimetry Lab developed MATiSSe since 2010 for Self-Powered Neutron Detectors material selection and geometry design, as well as for their respective partial neutron and gamma sensitivity calculations. MATiSSe is based on a comprehensive model of neutron and gamma interactions which take place in Selfpowered neutron detector components using the MCNP6 Monte Carlo code. As member of the project consortium, the THERMOCOAX SAS Company is currently manufacturing some instrumented pole prototypes to be tested in 2017. The full severe accident monitoring equipment, including the standalone low current acquisition system, will be tested during a joined CEA-THERMOCOAX experimental campaign in some realistic irradiation conditions, in the Slovenian TRIGA Mark II research reactor

    The Self-Powered Detector Simulation ‘MATiSSe’ Toolbox applied to SPNDs for severe accident monitoring in PWRs

    Get PDF
    International audienceIn the framework of the French National Research Agency program on nuclear safety and radioprotection, the ‘DIstributed Sensing for COrium Monitoring and Safety’ project aims at developing innovative instrumentation for corium monitoring in case of severe accident in a Pressurized Water nuclear Reactor. Among others, a new under-vessel instrumentation based on Self-Powered Neutron Detectors is developed using a numerical simulation toolbox, named ‘MATiSSe’. The CEA Instrumentation Sensors and Dosimetry Lab developed MATiSSe since 2010 for Self-Powered Neutron Detectors material selection and geometry design, as well as for their respective partial neutron and gamma sensitivity calculations. MATiSSe is based on a comprehensive model of neutron and gamma interactions which take place in Selfpowered neutron detector components using the MCNP6 Monte Carlo code. As member of the project consortium, the THERMOCOAX SAS Company is currently manufacturing some instrumented pole prototypes to be tested in 2017. The full severe accident monitoring equipment, including the standalone low current acquisition system, will be tested during a joined CEA-THERMOCOAX experimental campaign in some realistic irradiation conditions, in the Slovenian TRIGA Mark II research reacto

    Dynamic Parameter Identification for Cable-Driven Parallel Robots

    No full text
    International audienceThis paper presents an initial work of identifying the dynamic parameters for cable-driven parallel robot (CDPR), CRAFT with a rigorous protocol. An orbital trajectory of the platform is designed in order to get a pure translation movement of the platform. This trajectory evolves in a plane and allows the identification of four dynamic parameters, the mass of the platform and the first three moments along the three main axes. The identification results obtained respectively from the data from the experimental measurements of the moving platform, and from the experimental measurements treated with the application of a semi-implicit homogeneous differentiator, show that in spite of the complexity of CRAFT an identification of all its essential dynamic parameters is possible. Moreover, in the long term, an online identification of CRAFT during handling tasks is envisaged

    Digital Real-Time Multiple Channel Multiple Mode Neutron Flux Estimation on FPGA-based Device

    Get PDF
    This paper presents a complete custom full-digital instrumentation device that was designed for real-time neutron flux estimation, especially for nuclear reactor in-core measurement using subminiature Fission Chambers (FCs). Entire fully functional small-footprint design (about 1714 LUTs) is implemented on FPGA. It enables real-time acquisition and analysis of multiple channels neutron's flux both in counting mode and Campbelling mode. Experimental results obtained from this brand new device are consistent with simulation results and show good agreement within good uncertainty. This device paves the way for new applications perspectives in real-time nuclear reactor monitoring
    corecore