11,164 research outputs found

    The Impact of Channel Feedback on Opportunistic Relay Selection for Hybrid-ARQ in Wireless Networks

    Full text link
    This paper presents a decentralized relay selection protocol for a dense wireless network and describes channel feedback strategies that improve its performance. The proposed selection protocol supports hybrid automatic-repeat-request transmission where relays forward parity information to the destination in the event of a decoding error. Channel feedback is employed for refining the relay selection process and for selecting an appropriate transmission mode in a proposed adaptive modulation transmission framework. An approximation of the throughput of the proposed adaptive modulation strategy is presented, and the dependence of the throughput on system parameters such as the relay contention probability and the adaptive modulation switching point is illustrated via maximization of this approximation. Simulations show that the throughput of the proposed selection strategy is comparable to that yielded by a centralized selection approach that relies on geographic information.Comment: 30 pages, 9 figures, submitted to the IEEE Transactions on Vehicular Technology, revised March 200

    Opportunistic Relay Selection with Limited Feedback

    Full text link
    It has been shown that a decentralized relay selection protocol based on opportunistic feedback from the relays yields good throughput performance in dense wireless networks. This selection strategy supports a hybrid-ARQ transmission approach where relays forward parity information to the destination in the event of a decoding error. Such an approach, however, suffers a loss compared to centralized strategies that select relays with the best channel gain to the destination. This paper closes the performance gap by adding another level of channel feedback to the decentralized relay selection problem. It is demonstrated that only one additional bit of feedback is necessary for good throughput performance. The performance impact of varying key parameters such as the number of relays and the channel feedback threshold is discussed. An accompanying bit error rate analysis demonstrates the importance of relay selection.Comment: 5 pages, 6 figures, to appear in Proceedings of 2007 IEEE Vehicular Technology Conference-Spring in Dublin, Irelan

    Relay-Assisted User Scheduling in Wireless Networks with Hybrid-ARQ

    Full text link
    This paper studies the problem of relay-assisted user scheduling for downlink wireless transmission. The base station or access point employs hybrid automatic-repeat-request (HARQ) with the assistance of a set of fixed relays to serve a set of mobile users. By minimizing a cost function of the queue lengths at the base station and the number of retransmissions of the head-of-line packet for each user, the base station can schedule an appropriate user in each time slot and an appropriate transmitter to serve it. It is shown that a priority-index policy is optimal for a linear cost function with packets arriving according to a Poisson process and for an increasing convex cost function where packets must be drained from the queues at the base station.Comment: 14 pages, 5 figures, submitted to the IEEE Transactions on Vehicular Technology in October 2008, revised in March 2009 and May 200

    Ranking Economics Journals, Economics Departments, and Economists Using Teaching-Focused Research Productivity

    Get PDF
    This paper constructs new rankings of economics journals, economics departments, and economists that employ a measure of teaching-focused research productivity, an area of growing importance in recent years. The ranking methodologies presented here use information from articles that were published from 1991 through the early part of 2005 within the Journal of Economic Literature\u27 s economic education classifications (A200-A290). The Journal of Economic Literature tops the list of journals, followed by the Review of Economics and Statistics and the American Economic Review . Among the top institutions are Vanderbilt University, Indiana University, and the University of Wisconsin. Others that rank high here, such as Oberlin College and Denison University, do not often fare as well using methodologies that evaluate more traditional types of economics research. Finally, among the economists we find that John Siegfried, William Becker, and Michael Watts are ranked above other economists

    An Energy-Based Comparison of Long-Hop and Short-Hop Routing in MIMO Networks

    Full text link
    This paper considers the problem of selecting either routes that consist of long hops or routes that consist of short hops in a network of multiple-antenna nodes, where each transmitting node employs spatial multiplexing. This distance-dependent route selection problem is approached from the viewpoint of energy efficiency, where a route is selected with the objective of minimizing the transmission energy consumed while satisfying a target outage criterion at the final destination. Deterministic line networks and two-dimensional random networks are considered. It is shown that when 1) the number of hops traversed between the source and destination grows large or 2) when the target success probability approaches one or 3) when the number of transmit and/or receive antennas grows large, short-hop routing requires less energy than long-hop routing. It is also shown that if both routing strategies are subject to the same delay constraint, long-hop routing requires less energy than short-hop routing as the target success probability approaches one. In addition, numerical analysis indicates that given loose outage constraints, only a small number of transmit antennas are needed for short-hop routing to have its maximum advantage over long-hop routing, while given stringent outage constraints, the advantage of short-hop over long-hop routing always increases with additional transmit antennas.Comment: 27 pages, 12 figures, submitted to IEEE Transactions on Vehicular Technology in March 2009, revised in July 200

    The bacterial transposon Tn7 causes premature polyadenylation of mRNA in eukaryotic organisms: TAGKO mutagenesis in filamentous fungi

    Get PDF
    TAGKO is a Tn7-based transposition system for genome wide mutagenesis in filamentous fungi. The effects of transposon insertion on the expression of TAGKO alleles were examined in Magnaporthe grisea and Mycosphaerella graminicola. Northern analysis showed that stable, truncated transcripts were expressed in the TAGKO mutants. Mapping of the 3′-ends of TAGKO cDNAs revealed that they all contain Tn7 end sequences, regardless of the transposon orientation. Polyadenylation signals characteristic of eukaryotic genes, preceded by stop codons in all frames, are located in both ends of the bacterial transposon. Thus, TAGKO transcripts are prematurely polyadenylated, and truncated proteins are predicted to be translated in the fungal mutants. Depending on the extent of protein truncation, TAGKO mutations in HPD4 (encoding p-hydroxyphenylpyruvate dioxygenase) resulted in tyrosine sensitivity in the two fungi. Similarly, a particular M.grisea CBS1 (encoding cystathionine β-synthase) TAGKO cDNA failed to complement cysteine auxotrophy in a yeast CBS mutant. TAGKO, therefore, represents a useful tool for in vivo study of truncated gene products in filamentous fungi.postprin

    Heisenberg-picture approach to the exact quantum motion of a time-dependent forced harmonic oscillator

    Get PDF
    In the Heisenberg picture, the generalized invariant and exact quantum motions are found for a time-dependent forced harmonic oscillator. We find the eigenstate and the coherent state of the invariant and show that the dispersions of these quantum states do not depend on the external force. Our formalism is applied to several interesting cases.Comment: 15 pages, two eps files, to appear in Phys. Rev. A 53 (6) (1996

    GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging

    Get PDF
    Tomography has made a radical impact on diverse fields ranging from the study of 3D atomic arrangements in matter to the study of human health in medicine. Despite its very diverse applications, the core of tomography remains the same, that is, a mathematical method must be implemented to reconstruct the 3D structure of an object from a number of 2D projections. In many scientific applications, however, the number of projections that can be measured is limited due to geometric constraints, tolerable radiation dose and/or acquisition speed. Thus it becomes an important problem to obtain the best-possible reconstruction from a limited number of projections. Here, we present the mathematical implementation of a tomographic algorithm, termed GENeralized Fourier Iterative REconstruction (GENFIRE). By iterating between real and reciprocal space, GENFIRE searches for a global solution that is concurrently consistent with the measured data and general physical constraints. The algorithm requires minimal human intervention and also incorporates angular refinement to reduce the tilt angle error. We demonstrate that GENFIRE can produce superior results relative to several other popular tomographic reconstruction techniques by numerical simulations, and by experimentally by reconstructing the 3D structure of a porous material and a frozen-hydrated marine cyanobacterium. Equipped with a graphical user interface, GENFIRE is freely available from our website and is expected to find broad applications across different disciplines.Comment: 18 pages, 6 figure
    • …
    corecore