17 research outputs found

    Development of a 3-dimensional model to study right heart dysfunction in pulmonary arterial hypertension: first observations

    Get PDF
    Pulmonary arterial hypertension (PAH) patients eventually die of right heart failure (RHF). Currently, there is no suitable pre-clinical model to study PAH. Therefore, we aim to develop a right heart dysfunction (RHD) model using the 3-dimensional engineered heart tissue (EHT) approach and cardiomyocytes derived from patient-induced pluripotent stem cells (iPSCs) to unravel the mechanisms that determine the fate of a pressure-overloaded right ventricle. iPSCs from PAH and healthy control subjects were differentiated into cardiomyocytes (iPSC-CMs), incorporated into the EHT, and maintained for 28 days. In comparison with control iPSC-CMs, PAH-derived iPSC-CMs exhibited decreased beating frequency and increased contraction and relaxation times. iPSC-CM alignment within the EHT was observed. PAH-derived EHTs exhibited higher force, and contraction and relaxation times compared with control EHTs. Increased afterload was induced using 2x stiffer posts from day 0. Due to high variability, there were no functional differences between normal and stiffer EHTs, and no differences in the hypertrophic gene expression. In conclusion, under baseline spontaneous conditions, PAH-derived iPSC-CMs and EHTs show prolonged contraction compared with controls, as observed clinically in PAH patients. Further optimization of the hypertrophic model and profound characterization may provide a platform for disease modelling and drug screening.Therapeutic cell differentiatio

    Development of Bioactive Patch for Maintenance of Implanted Cells at the Myocardial Infarcted Site

    Full text link
    [EN] Ischemia produced as a result of myocardial infarction might cause moderate or severe tissue death. Studies under development propose grafting stem cells into the affected area and we hypothesize that this mechanism could be enhanced by the application of a "bioactive implant." The implant herein proposed consists of a thin porous elastomeric membrane, filled with self-assembling nanofibers and human subcutaneous adipose tissue derived progenitor cells. We describe the development and characterization of two elastomeric membranes: poly(ethyl acrylate) (PEA) and poly(caprolactone 2-(methacryloyloxy) ethyl ester) (PCLMA). Both are a good material support to deliver cells within a soft self-assembling peptide and are elastic enough to withstand the stresses arising from the heartbeat. Both developed composites (PEA and PCLMA, combined with self-assembling peptide) equally facilitate the propagation of electrical pulses and maintain their genetic profile of the seeded cells. Preliminary studies with small animal models suggest that, at short times, the bioimplant shows good adhesion with the myocardium. After three days cells loaded in the patch remain alive at the implanted site. We propose that the bioactive patch (elastomeric membranes with self-assembling peptide and cells) could increase the efficacy of future cardiac cell therapy by improving cell immobilization and survival at the affected site.The authors wish to thank the Department of Cardiac Surgery (Hospital Germans Trias i Pujol, Badalona) for their collaboration in obtaining human samples, Dr. Bago for his kind contribution in the cell transduction process and BLI analysis, and Joan Gilabert from Biomaterials Laboratory (GEMAT, IQS-School of Engineering) who kindly helped them with wettability measurements. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant agreement no. 229239. This work was also supported by Grants from Ministerio de Educacion y Ciencia (SAF2011-30067-C02-01 and M. Arnal-Pastor FPU 2009-1870 grant), Red de Terapia Celular-TerCel (RD12/0019/0029), Red Cardio-vascular (RD12/0042/0047), and Fundacio La Marato de TV3 (122232).Castells-Sala, C.; Vallés Lluch, A.; Soler-Botija, C.; Arnal Pastor, MP.; Martínez Ramos, C.; Fernandez-Muinos, T.; Mari-Buye, N.... (2015). Development of Bioactive Patch for Maintenance of Implanted Cells at the Myocardial Infarcted Site. Journal of Nanomaterials. (804017). https://doi.org/10.1155/2015/804017S80401

    The thromboxane receptor antagonist NTP42 promotes beneficial adaptation and preserves cardiac function in experimental models of right heart overload

    Get PDF
    Background: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by increased pulmonary artery pressure leading to right ventricular (RV) failure. While current PAH therapies improve patient outlook, they show limited benefit in attenuating RV dysfunction. Recent investigations demonstrated that the thromboxane (TX) A2 receptor (TP) antagonist NTP42 attenuates experimental PAH across key hemodynamic parameters in the lungs and heart. This study aimed to validate the efficacy of NTP42:KVA4, a novel oral formulation of NTP42 in clinical development, in preclinical models of PAH while also, critically, investigating its direct effects on RV dysfunction. Methods: The effects of NTP42:KVA4 were evaluated in the monocrotaline (MCT) and pulmonary artery banding (PAB) models of PAH and RV dysfunction, respectively, and when compared with leading standard-of-care (SOC) PAH drugs. In addition, the expression of the TP, the target for NTP42, was investigated in cardiac tissue from several other related disease models, and from subjects with PAH and dilated cardiomyopathy (DCM). Results: In the MCT-PAH model, NTP42:KVA4 alleviated disease-induced changes in cardiopulmonary hemodynamics, pulmonary vascular remodeling, inflammation, and fibrosis, to a similar or greater extent than the PAH SOCs tested. In the PAB model, NTP42:KVA4 improved RV geometries and contractility, normalized RV stiffness, and significantly increased RV ejection fraction. In both models, NTP42:KVA4 promoted beneficial RV adaptation, decreasing cellular hypertrophy, and increasing vascularization. Notably, elevated expression of the TP target was observed both in RV tissue from these and related disease models, and in clinical RV specimens of PAH and DCM. Conclusion: This study shows that, through antagonism of TP signaling, NTP42:KVA4 attenuates experimental PAH pathophysiology, not only alleviating pulmonary pathologies but also reducing RV remodeling, promoting beneficial hypertrophy, and improving cardiac function. The findings suggest a direct cardioprotective effect for NTP42:KVA4, and its potential to be a disease-modifying therapy in PAH and other cardiac conditions

    Low density lipoprotein receptor-related protein 1 is upregulated in epicardial fat from type 2 diabetes mellitus patients and correlates with glucose and triglyceride plasma levels

    No full text
    Lipoprotein receptor expression plays a crucial role in the pathophysiology of adipose tissue in in vivo models of diabetes. However, there are no studies in diabetic patients. The aims of this study were to analyze (a) low-density lipoprotein receptor-related protein 1 (LRP1) and very low-density lipoprotein receptor (VLDLR) expression in epicardial and subcutaneous fat from type 2 diabetes mellitus compared with nondiabetic patients and (b) the possible correlation between the expression of these receptors and plasmatic parameters. Adipose tissue biopsy samples were obtained from diabetic (n = 54) and nondiabetic patients (n = 22) undergoing cardiac surgery before the initiation of cardiopulmonary bypass. Adipose LRP1 and VLDLR expression was analyzed at mRNA level by real-time PCR and at protein level by Western blot analysis. Adipose samples were also subjected to lipid extraction, and fat cholesterol ester, triglyceride, and free cholesterol contents were analyzed by thin-layer chromatography. LRP1 expression was higher in epicardial fat from diabetic compared with nondiabetic patients (mRNA 17.63 ± 11.37 versus 7.01 ± 4.86; P = 0.02; protein 11.23 ± 7.23 versus 6.75 ± 5.02, P = 0.04). VLDLR expression was also higher in epicardial fat from diabetic patients but only at mRNA level (231.25 ± 207.57 versus 56.64 ± 45.64, P = 0.02). No differences were found in the expression of LRP1 or VLDLR in the subcutaneous fat from diabetic compared with nondiabetic patients. Epicardial LRP1 and VLDLR mRNA overexpression positively correlated with plasma triglyceride levels (R(2) = 0.50, P = 0.01 and R(2) = 0.44, P = 0.03, respectively) and epicardial LRP1 also correlated with plasma glucose levels (R(2) = 0.33, P = 0.03). These results suggest that epicardial overexpression of certain lipoprotein receptors such as LRP1 and VLDLR expression may play a key role in the alterations of lipid metabolism associated with type 2 diabetes mellitus

    Interplay of sex hormones and long-term right ventricular adaptation in a Dutch PAH-cohort

    No full text
    BACKGROUND: To investigate the association between altered sex hormone expression and long-term right ventricular (RV) adaptation and progression of right heart failure in a Dutch cohort of Pulmonary Arterial Hypertension (PAH)-patients across a wide range of ages.METHODS: In this study we included 279 PAH-patients, of which 169 females and 110 males. From 59 patients and 21 controls we collected plasma samples for sex hormone analysis. Right heart catheterization (RHC) and/or cardiac magnetic resonance (CMR) imaging was performed at baseline. For longitudinal data analysis, we selected patients that underwent a RHC and/or CMR maximally 1.5 years prior to an event (death or transplantation, N = 49).RESULTS: Dehydroepiandrosterone-sulfate (DHEA-S) levels were reduced in male and female PAHpatients compared to controls, whereas androstenedione and testosterone were only reduced in female patients. Interestingly, low DHEA-S and high testosterone levels were correlated to worse RV function in male patients only. Subsequently, we analyzed prognosis and RV adaptation in females stratified by age. Females < 45years had best prognosis in comparison to females & GE;55years and males. No differences in RV function at baseline were observed, despite higher pressure-overload in females < 45years. Longitudinal data demonstrated a clear distinction in RV adaptation. Although females < 45years had an event at a later time point, RV function was more impaired at end-stage disease.CONCLUSIONS: Sex hormones are differently associated with RV function in male and female PAHpatients. DHEA-S appeared to be lower in male and female PAH-patients. Females < 45years could persevere pressure-overload for a longer time, but had a more severe RV phenotype at end-stage disease.J Heart Lung Transplant 2022;41:445-457 (c) 2021 The Author(s). Published by Elsevier Inc. on behalf of International Society for Heart and Lung Transplantation. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/
    corecore